AI Article Synopsis

  • The study aimed to create a realistic cerebellar model using artificial spiking neural networks to simulate motor tasks, focusing on associative learning and extinction across multiple sessions.
  • Evolutionary algorithms were employed to fine-tune the parameters of the cerebellar microcircuit, comparing two models: one with only cortical plasticity and another incorporating additional nuclear plasticity sites, both demonstrating human-like behavioral responses in eye blink conditioning.
  • Results indicated that the model with distributed plasticity exhibited superior learning capabilities, resulting in faster and more stable acquisition and reacquisition of conditioned responses, suggesting the importance of multiple neural mechanisms in complex learning processes.

Article Abstract

Goal: In this study, we defined a realistic cerebellar model through the use of artificial spiking neural networks, testing it in computational simulations that reproduce associative motor tasks in multiple sessions of acquisition and extinction.

Methods: By evolutionary algorithms, we tuned the cerebellar microcircuit to find out the near-optimal plasticity mechanism parameters that better reproduced human-like behavior in eye blink classical conditioning, one of the most extensively studied paradigms related to the cerebellum. We used two models: one with only the cortical plasticity and another including two additional plasticity sites at nuclear level.

Results: First, both spiking cerebellar models were able to well reproduce the real human behaviors, in terms of both "timing" and "amplitude", expressing rapid acquisition, stable late acquisition, rapid extinction, and faster reacquisition of an associative motor task. Even though the model with only the cortical plasticity site showed good learning capabilities, the model with distributed plasticity produced faster and more stable acquisition of conditioned responses in the reacquisition phase. This behavior is explained by the effect of the nuclear plasticities, which have slow dynamics and can express memory consolidation and saving.

Conclusions: We showed how the spiking dynamics of multiple interactive neural mechanisms implicitly drive multiple essential components of complex learning processes. 

Significance: This study presents a very advanced computational model, developed together by biomedical engineers, computer scientists, and neuroscientists. Since its realistic features, the proposed model can provide confirmations and suggestions about neurophysiological and pathological hypotheses and can be used in challenging clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2015.2485301DOI Listing

Publication Analysis

Top Keywords

spiking neural
8
distributed plasticity
8
eye blink
8
associative motor
8
cortical plasticity
8
plasticity
6
model
5
spiking
4
neural network
4
network distributed
4

Similar Publications

Spatio-temporal transformers for decoding neural movement control.

J Neural Eng

January 2025

Department of Information Engineering, Electronics and Telecommunications, University of Rome La Sapienza, Piazzale Aldo Moro 5, Rome, 00185, ITALY.

Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activity in vivo remains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results. Approach: To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity.

View Article and Find Full Text PDF

A multi-domain feature fusion epilepsy seizure detection method based on spike matching and PLV functional networks.

J Neural Eng

January 2025

Hangzhou Dianzi University, School of Automation, Hangzhou Dianzi University, Hangzhou 310052, China, Hangzhou, Zhejiang, 310018, CHINA.

The identification of spikes, as a typical characteristic wave of epilepsy, is crucial for diagnosing and locating the epileptogenic region. The traditional seizure detection methods lack spike features and have low sample richness. This paper proposes a seizure detection method with spike-based phase locking value (PLV) functional brain networks and multi-domain fused features.

View Article and Find Full Text PDF

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.

View Article and Find Full Text PDF

Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.

View Article and Find Full Text PDF

Response preparation is accomplished by gradual accumulation in neural activity until a threshold is reached. In humans, such a preparatory signal, referred to as the lateralized readiness potential, can be observed in the EEG over sensorimotor cortical areas before execution of a voluntary movement. Although well-described for manual movements, less is known about preparatory EEG potentials for saccadic eye movements in humans and nonhuman primates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!