Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Possible electron-induced ruptures of C3'-O3', C5'-O5', and N1-C1' bonds in O4-hydrogenated 2'-deoxythymidine-3'-monophosphate (3'-dT(O4H)MPH) and 2'-deoxythymidine-5'-monophosphate (5'-dT(O4H)MPH) are investigated using density functional theory calculations, and efficient pathways are proposed. Electron attachment causes remarkable structural relaxation in the thymine C6 site. A concerted process of intramolecular proton transfer (IPT) from the C2' site of 2'-deoxyribose to the C6 site and the C3'-O3' bond rupture is observed in [3'-dT(O4H)MPH](-). A low activation barrier (9.32 kcal/mol) indicates that this pathway is the most efficient one as compared to other known pathways leading to backbone breaks of a single strand DNA at the non-3'-end thymine, which prevents the N1-C1' bond cleavage in [3'-dT(O4H)MPH](-). However, essentially spontaneous N1-C1' bond cleavage following similar IPT is predicted in [5'-dT(O4H)MPH](-). A moderate activation barrier (13.02 kcal/mol) for the rate-controlling IPT step suggests that base release from the N1-C1' cleavage arises readily at the 3'-end of single strand DNA with the strand ended by a thymine. The C5'-O5' bond has only an insignificant change in the IPT process. Solvent effects are found to increase slightly the energy requirements for either bond ruptures (11.23 kcal/mol (C3'-O3') vs 16.18 kcal/mol (N1-C1')), but not change their relative efficiencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.5b06195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!