There is growing interest in the development of methods capable of non-invasive characterization of stem cells prior to their use in cell-based therapies. Raman spectroscopy has previously been used to detect biochemical changes commensurate with the osteogenic, cardiogenic, and neurogenic differentiation of stem cells. The aim of this study was to characterize the adipogenic differentiation of live adipose derived stem cells (ASCs) under aseptic conditions. ASCs were cultured in adipogenic or basal culture medium for 14 days in customized culture flasks containing quartz windows. Raman spectra were acquired every 3 days. Principal component analysis (PCA) was used to identify spectral changes in the cultures over time. Adipogenic differentiation was confirmed using quantitative reverse transcription polymerase chain reaction for the marker genes PPARγ and ADIPOQ and Oil red O staining performed. PCA demonstrated that lipid associated spectral features varied throughout ASC differentiation with the earliest detection of the lipid associated peak at 1,438 cm(-1) after 3 days of induction. After 7 days of culture there were clear differences between the spectra acquired from ASCs in adipogenic or basal culture medium. No changes were observed in the spectra acquired from undifferentiated ASCs. Significant up-regulation in the expression of both PPARγ and ADIPOQ genes (P < 0.001) was observed after 14 days of differentiation as was prominent Oil red O staining. However, the Raman sampling process resulted in weaker gene expression compared with ASCs that had not undergone Raman analysis. This study demonstrated that Raman spectroscopy can be used to detect biochemical changes associated with adipogenic differentiation in a non-invasive and aseptic manner and that this can be achieved as early as three days into the differentiation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832334PMC
http://dx.doi.org/10.1002/cyto.a.22777DOI Listing

Publication Analysis

Top Keywords

stem cells
12
spectra acquired
12
raman spectroscopy
8
aseptic conditions
8
adipogenic differentiation
8
adipogenic basal
8
basal culture
8
culture medium
8
pparγ adipoq
8
lipid associated
8

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!