Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury.

Mol Cell Biochem

Department of Pharmacology & Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt.

Published: January 2016

Oxidative stress is one of the mechanisms involved in the acute carbon tetrachloride (CCl4)-induced hepatotoxicity. Since 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, known as tempol, has powerful antioxidant properties, we investigated its potential hepatoprotective effects and the underlying mechanisms that may add further benefits for its clinical usefulness using an acute model of CCl4-induced hepatotoxicity. One hour after CCl4 induction of acute hepatotoxicity, mice were treated with a daily dose of 20 mg/kg/day tempol for 3 days. It was found that treatment of animals with tempol significantly negated the pathological changes in liver function parameters as well as histology induced by CCl4. In addition, tempol significantly ameliorated CCl4-induced lipid peroxidation and GSH depletion, and improved catalase activity. Furthermore, tempol alleviated the inflammation induced by CCl4 as indicated by reducing the liver expression level of nuclear factor-kappa B (NF-κB) and tumor necrosis factor-α (TNF-α). Finally, tempol significantly reduced expression level of the B-cell lymphoma-2 protein (Bcl-2) and active caspase-3 which are known markers of apoptosis. In conclusion, the present study provides important evidences for the promising hepatoprotective effects of tempol that can be explained by amelioration of oxidative stress mainly through replenishment of GSH, restoration of antioxidant enzyme activities, and reduction of lipid peroxides alongside its anti-inflammatory properties.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-015-2572-2DOI Listing

Publication Analysis

Top Keywords

tempol
8
oxidative stress
8
ccl4-induced hepatotoxicity
8
hepatoprotective effects
8
induced ccl4
8
expression level
8
experimental evidence
4
evidence therapeutic
4
therapeutic potential
4
potential tempol
4

Similar Publications

This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.

View Article and Find Full Text PDF

Luminal flow in the connecting tubule induces afferent arteriole vasodilation.

Clin Exp Nephrol

January 2025

Renal Medicine Division, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Office 338A, Atlanta, GA, 30322, USA.

Background: Renal autoregulatory mechanisms modulate renal blood flow. Connecting tubule glomerular feedback (CNTGF) is a vasodilator mechanism in the connecting tubule (CNT), triggered paracrinally when high sodium levels are detected via the epithelial sodium channel (ENaC). The primary activation factor of CNTGF-whether NaCl concentration, independent luminal flow, or the combined total sodium delivery-is still unclear.

View Article and Find Full Text PDF

Silk-engineered bioactive nanoparticles for targeted alleviation of acute inflammatory disease via macrophage reprogramming.

J Nanobiotechnology

January 2025

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, 400715, China.

Significant progress has been made in the development of potential therapies for diseases associated with inflammation and oxidative stress. Nevertheless, the availability of effective clinical treatments remains limited. Herein, we introduce a novel silk-based bioactive material, TPSF, developed by sequentially conjugating Tempol and phenylboronic acid pinacol ester to silk fibroin.

View Article and Find Full Text PDF

Bisphenol S induced endothelial dysfunction via mitochondrial pathway in the vascular endothelial cells, and detoxification effect of albumin binding.

Chem Biol Interact

January 2025

College of Chemistry and Materials, Key Laboratory of Green Catalysis of Jiangxi Education Institutes, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

As a replacement of bisphenol A, bisphenol S (BPS) is commonly used in the wrappers and food containers of daily life. Epidemiological studies demonstrate a close link between BPS exposure and vascular diseases, where the biological activities of BPS remain scarcely known. Herein, the effects of BPS on endothelial function as well as the underlying mechanism were investigated in human umbilical vein endothelial cells (HUVECs) and mouse arteries.

View Article and Find Full Text PDF

Background: Paternal preconception alcohol exposure affects fetal development; however, it is largely unknown about the influences on offspring vasculature and mechanisms.

Methods: Offspring born form paternal rats treated with alcohol or water before pregnant was raised until 3 months of age. Vessel tone of mesenteric arteries was detected using myograph system; whole-cell calcium channel current in smooth muscle cells was tested using patch-clamp; molecule expressions were detected with real-time PCR, western blotting, and Dihydroethidium (DHE); DNA methylations were determined using targeted bisulfate sequencing assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!