Local adaptation may optimize an organism's investment in defenses in response to the risk of infection by spatially heterogeneous parasites and other natural enemies. However, local adaptation may be constrained if recruitment is decoupled from selective pressure experienced by the parent generation. We predicted that the ability of three intertidal littorinid snail species to defend against trematode parasites would depend on prior levels of population exposure to parasites and on larval dispersal mode, a proxy for population openness. In a common garden experiment, for two snail species with direct development and localized recruitment (Littorina obtusata and Littorina saxatilis), hosts from sites with high trematode infection risk were less susceptible to infection than hosts from low-risk sites. However, this relationship was not apparent for a third host species with broadcast larvae (Littorina littorea), suggesting that broad larval dispersal can impede local adaptation; alternatively, the lack of response in this species could owe to other factors that limited experimental infection in this host. Our findings support that locally recruiting hosts can adapt their defenses to scale with localized infection risk.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-015-3461-9DOI Listing

Publication Analysis

Top Keywords

local adaptation
16
selective pressure
8
snail species
8
larval dispersal
8
infection risk
8
infection
5
local
4
adaptation parasite
4
parasite selective
4
pressure comparing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!