The paper deals with a stagnation-point boundary layer flow towards a permeable stretching/shrinking sheet in a nanofluid where the flow and the sheet are not aligned. We used the Buongiorno model that is based on the Brownian diffusion and thermophoresis to describe the nanofluid in this problem. The main purpose of the present paper is to examine whether the non-alignment function has the effect on the problem considered when the fluid suction and injection are imposed. It is interesting to note that the non-alignment function can ruin the symmetry of the flows and prominent in the shrinking sheet. The fluid suction will reduce the impact of the non-alignment function of the stagnation flow and the stretching/shrinking sheet but at the same time increasing the velocity profiles and the shear stress at the surface. Furthermore, the effects of the pertinent parameters such as the Brownian motion, thermophoresis, Lewis number and the suction/injection on the flow and heat transfer characteristics are also taken into consideration. The numerical results are shown in the tables and the figures. It is worth mentioning that dual solutions are found to exist for the shrinking sheet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594122 | PMC |
http://dx.doi.org/10.1038/srep14640 | DOI Listing |
Nanotechnology
December 2023
School of Basic Sciences and Humanities, German Jordanian University, Amman, Jordan.
This research article, explores the influence of an inclined magnetic field on the fluid flow over a permeable stretching/shrinking surface with heat transfer. The study use water as a conventional base fluid, with graphene oxide (GO) and Aluminum oxide (AlO) nanoparticles submerged to create a nanofluid, the system of governing nonlinear partial differential equations converted into ordinary differential equations via suitable similarity conversions. This allow for the unique solution for stretching sheet/shrinking sheets to be obtained, along with the corresponding temperature solution in terms of the hypergeometric function, several parameters are included in the investigation and their contribution is graphically explained to examine physical characteristics such as radiation, inclined magnetic field, solution domain, volume fraction parameter, and temperature jump.
View Article and Find Full Text PDFSci Rep
December 2023
Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
The study focuses on the behavior of an electrically conducting non-Newtonian fluid with couple stress properties, using water-based bionanofluid. The fluid is analyzed as it flows across a porous stretching/shrinking sheet within its own plane. This Study also explores the Bejan Number and Entropy Generation.
View Article and Find Full Text PDFHeliyon
November 2023
Department of Computer Science, Bahria University, Islamabad 44000, Pakistan.
Present study is dedicated to analyze the closed form solution of nanofluid flow over a stretching/shrinking sheet with dual availability. Flow is developed through two-dimensional boundary layer theory. Appropriate tensor is used to generate the continuity, energy, and momentum equations.
View Article and Find Full Text PDFACS Omega
August 2023
Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
The use of melting heat transfer (MHT) and nanofluids for electronics cooling and energy storage efficiency has gained the attention of numerous researchers. This study investigates the effects of MHD, mixed convection, thermal radiation, stretching, and shrinking on the heat transfer characteristics of a Cu-water-based nanofluid over a stretching/shrinking sheet with MHT effects. The governing equations are transformed into nonlinear ordinary differential equations and solved numerically using the Keller Box method.
View Article and Find Full Text PDFSci Rep
August 2023
Department of Mechanical Engineering, Esfarayen University of Technology, Esfarayen, North Khorasan, Iran.
The current studies analytically summarize the impact of magnetohydrodynamic and thermal radiation on the non-Newtonian continuous uniform motion of viscid non-compressible nanofluid across a penetrable stretching/shrinking sheet, even though accomplish Navier's first and second order slips along mass transpiration. Blood-bearing silver and copper nanomaterials have distinct flow and heat transfer properties when exposed to heat. Silver (Ag) as well as copper (Cu) nanoparticles are assumed to be present in blood as the non-Newtonian liquid; this fluid serves as the base.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!