Progress in Synthesis of Highly Active and Stable Nickel-Based Catalysts for Carbon Dioxide Reforming of Methane.

ChemSusChem

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Published: November 2015

In recent decades, rising anthropogenic greenhouse gas emissions (mainly CO2 and CH4 ) have increased alarm due to escalating effects of global warming. The dry carbon dioxide reforming of methane (DRM) reaction is a sustainable way to utilize these notorious greenhouse gases. This paper presents a review of recent progress in the development of nickel-based catalysts for the DRM reaction. The enviable low cost and wide availability of nickel compared with noble metals is the main reason for persistent research efforts in optimizing the synthesis of nickel-based catalysts. Important catalyst features for the rational design of a coke-resistant nickel-based nanocatalyst for the DRM reaction are also discussed. In addition, several innovative developments based on salient features for the stabilization of nickel nanocatalysts through various means (which include functionalization with precursors, synthesis by plasma treatment, stabilization/confinement on mesoporous/microporous/carbon supports, and the formation of metal oxides) are highlighted. The final part of this review covers major issues and proposed improvement strategies pertaining to the rational design of nickel-based catalysts with high activity and stability for the DRM reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201500390DOI Listing

Publication Analysis

Top Keywords

nickel-based catalysts
16
drm reaction
16
carbon dioxide
8
dioxide reforming
8
reforming methane
8
rational design
8
nickel-based
5
progress synthesis
4
synthesis highly
4
highly active
4

Similar Publications

The photoelectrochemical (PEC) urea oxidation reaction (UOR) presents a promising half-reaction for green hydrogen production, but the stable resonance structure of the urea molecule results in sluggish kinetics for breaking the C-N bond. Herein, we realize the record PEC UOR performance on a NiO-modified n-Si photoanode (NiO@Ni/n-Si) by harnessing the adsorbate-adsorbate interaction. We quantificationally unveil a dependence of the UOR activation barrier on the coverage of photogenerated surface high-valent Ni-oxo species (NiIV=O) by employing operando PEC spectroscopic measurements and theoretical simulations.

View Article and Find Full Text PDF

As the global quest for sustainable energy keeps rising, exploring novel efficient and practical photocatalysts remains a research and industrial urge. Particularly, metal organic frameworks were proven to contribute to various stages of the carbon cycle, from CO capture to its conversion. Herein, we report the photo-methanation activity of three isostructural, nickel-based metal organic frameworks incorporating additional niobium, iron, and aluminum sites, having demonstrated exceptional CO capture abilities from thin air in previous reports.

View Article and Find Full Text PDF

Density functional theory study of hydrogen and oxygen reactions on NiO(100) and Ce doped NiO(100).

J Mol Model

January 2025

State Key Laboratory of Polyolefins and Catalysis, Shanghai, 200062, People's Republic of China.

Context: This study aims to reveal the reaction mechanisms of H and O on the NiO(100) and Ce-doped NiO(100) surfaces using the density functional theory (DFT) combined with the on-site Coulomb correction (DFT + U) method. It was found that H and O react favorably on the reduced surfaces of both materials. However, after the oxygen vacancy is filled, the activation energy for the reaction between H₂ and lattice oxygen increases.

View Article and Find Full Text PDF

Intermetallic RNiSi (R = Ca, La, and Y) Catalysts with Electron-Rich Ni Sites for Continuous Flow Selective Hydrogenation of Maleic Anhydride.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Fine Chemicals, Laboratory of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.

The industrial advancement of downstream products resulting from the directed hydrogenation of maleic anhydride is hindered by the limitations related to the activity and stability of catalysts. The development of nonprecious metal intermetallic compounds, in which active sites are adjustable in the local structures and electronic properties embedded within a distinct framework, holds immense potential in enhancing catalytic efficacy and stability. Herein, we report that nickel-based silicides catalysts, RNiSi (R = Ca, La, and Y), afford high efficiency in the selective hydrogenation of maleic anhydride.

View Article and Find Full Text PDF

Pyrazole-Mediated On-Surface Synthesis of Nickel/Nickel Oxide Hybrids for Efficient Urea-Assisted Hydrogen Production.

Nano Lett

January 2025

Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai 200438, China.

Creating densely functionalized supported materials without aggregation has been one of the ultimate goals for heterogeneous catalysts. Direct conversion of readily available bulk materials into highly dispersed supported materials could be highly beneficial for real applications. In this work, we invented an on-surface synthetic strategy for generating highly loaded and well-dispersed nickel nanoparticles on nickel oxide supports (Ni/NiO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!