Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dictionary-based and part-based methods are among the most popular approaches to visual recognition. In both methods, a mid-level representation is built on top of low-level image descriptors and high-level classifiers are trained on top of the mid-level representation. While earlier methods built the mid-level representation without supervision, there is currently great interest in learning both representations jointly to make the mid-level representation more discriminative. In this work we propose a new approach to visual recognition that jointly learns a shared, discriminative, and compact mid-level representation and a compact high-level representation. By using a structured output learning framework, our approach directly handles the multiclass case at both levels of abstraction. Moreover, by using a group-sparse prior in the structured output learning framework, our approach encourages sharing of visual words and thus reduces the number of words used to represent each class. We test our proposed method on several popular benchmarks. Our results show that, by jointly learning mid- and high-level representations, and fostering the sharing of discriminative visual words among target classes, we are able to achieve state-of-the-art recognition performance using far less visual words than previous approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2015.2408349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!