The neuropeptide SIFamide in the brain of three cockroach species.

J Comp Neurol

Department of Biology, Animal Physiology, University of Kassel, 34132, Kassel, Germany.

Published: May 2016

The sequence as well as the distribution pattern of SIFamide in the brain of different insects is highly conserved. As a general rule, at least four prominent SIFamide-immunoreactive somata occur in the pars intercerebralis. They arborize throughout the brain and the ventral nerve cord. Whereas SIFamide is implicated in mating and sleep regulation in Drosophila, other functions of this peptide remain largely unknown. To determine whether SIFamide plays a role in the circadian system of cockroaches, we studied SIFamide in Rhyparobia (= Leucophaea) maderae (Blaberidae), Periplaneta americana (Blattidae), and Therea petiveriana (Polyphagidae). Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry revealed identical SIFamide sequences (TYRKPPFNGSIFamide) in the three species. In addition to four large immunoreactive cells in the pars intercerebralis (group 1), smaller SIFamide-immunoreactive somata were detected in the pars intercerebralis (group 2), in the superior median protocerebrum (group 3), and in the lateral protocerebrum (group 4). Additional cells in the optic lobe (group 5) and posterior protocerebrum (group 6) were stained only in P. americana. Almost the entire protocerebrum was filled with a beaded network of SIFamide-immunoreactive processes that especially strongly invaded the upper unit of the central body. Double-label experiments did not confirm colocalizations with γ-aminobutyric acid (GABA) or the circadian coupling peptide pigment-dispersing factor (PDF). In contrast to locusts, colocalization of SIFamide and histamine immunoreactivity occurred not in group 1, but in group 4 cells. Because the accessory medulla displayed SIFamide immunoreactivity and injections of SIFamide delayed locomotor activity rhythms circadian time-dependently, SIFamide plays a role in the circadian system of cockroaches. J. Comp. Neurol. 524:1337-1360, 2016. © 2015 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.23910DOI Listing

Publication Analysis

Top Keywords

pars intercerebralis
12
protocerebrum group
12
sifamide
9
sifamide brain
8
sifamide-immunoreactive somata
8
sifamide plays
8
plays role
8
role circadian
8
circadian system
8
system cockroaches
8

Similar Publications

Circadian rhythms influence various physiological and behavioral processes such as sleep-wake cycles, hormone secretion, and metabolism. In , an important set of circadian output neurons are called pars intercerebralis (PI) neurons, which receive input from specific clock neurons called DN1. These DN1 neurons can further be subdivided into functionally and anatomically distinctive anterior (DN1a) and posterior (DN1p) clusters.

View Article and Find Full Text PDF
Article Synopsis
  • Research quantified the expression of these neuropeptides and their receptors across different stages of mosquito development and in various adult tissues, revealing that CCHa1 and CCHa2 are mainly found in the midgut, while receptors are more widely distributed.
  • Advanced techniques confirmed the presence of CCHamides in the brains and guts of male and female mosquitoes, and functional assays showed that CCHa1 and CCHa2 are natural ligands that activate
View Article and Find Full Text PDF

Hormones mediate inter-organ signaling which is crucial in orchestrating diverse behaviors and physiological processes including sleep and activity, feeding, growth, metabolism and reproduction. The pars intercerebralis and pars lateralis in insects represent major hubs which contain neurosecretory cells (NSC) that produce various hormones. To obtain insight into how hormonal signaling is regulated, we have characterized the synaptic connectome of NSC in the adult brain.

View Article and Find Full Text PDF

The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish.

View Article and Find Full Text PDF

The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, efforts have been limited toward understanding how specific NFκB transcription factors function in sleep. fruit flies carry three genes encoding NFκB transcription factors, , (), and .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!