Triple negative breast cancer (TNBC) is an aggressive form of breast cancer. Despite response to chemotherapy, relapses are frequent and resistance to available treatments is often observed in the metastatic setting. Therefore, identification of new therapeutic strategies is required. Here we have investigated the effect of the mithramycin analog EC-8042 (demycarosil-3D-β-D-digitoxosyl mithramycin SK) on TNBC. The drug caused a dose-dependent inhibition of proliferation of a set of TNBC cell lines in vitro, and decreased tumor growth in mice xenografted with TNBC cells. Mechanistically, EC-8042 caused an arrest in the G2 phase of the cell cycle, coincident with an increase in pCDK1 and Wee1 levels in cells treated with the drug. In addition, prolonged treatment with the drug also causes apoptosis, mainly through caspase-independent routes. Importantly, EC-8042 synergized with drugs commonly used in the therapy of TNBC in vitro, and potentiated the antitumoral effect of docetaxel in vivo. Together, these data suggest that the mithralog EC-8042 exerts an antitumoral action on TNBC cells and reinforces the action of standard of care drugs used in the therapy of this disease. These characteristics, together with a better toxicology profile of EC-8042 with respect to mithramycin, open the possibility of its clinical evaluation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4741734 | PMC |
http://dx.doi.org/10.18632/oncotarget.5942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!