In the Shader Lamps concept, a projector-camera system augments physical objects with projected virtual textures, provided that a precise intrinsic and extrinsic calibration of the system is available. Calibrating such systems has been an elaborate and lengthy task in the past and required a special calibration apparatus. Self-calibration methods in turn are able to estimate calibration parameters automatically with no effort. However they inherently lack global scale and are fairly sensitive to input data. We propose a new semi-automatic calibration approach for projector-camera systems that - unlike existing auto-calibration approaches - additionally recovers the necessary global scale by projecting on an arbitrary object of known geometry. To this end our method combines surface registration with bundle adjustment optimization on points reconstructed from structured light projections to refine a solution that is computed from the decomposition of the fundamental matrix. In simulations on virtual data and experiments with real data we demonstrate that our approach estimates the global scale robustly and is furthermore able to improve incorrectly guessed intrinsic and extrinsic calibration parameters thus outperforming comparable metric rectification algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2015.2459898DOI Listing

Publication Analysis

Top Keywords

global scale
12
semi-automatic calibration
8
projector-camera system
8
intrinsic extrinsic
8
extrinsic calibration
8
calibration parameters
8
calibration
6
on-site semi-automatic
4
calibration registration
4
registration projector-camera
4

Similar Publications

Impaired nutritional status is closely related to the development of sarcopenia and poor quality of life (QoL) in cancer patients. This study aimed to investigate the association of Geriatric Nutritional Risk Index (GNRI) with sarcopenia and QoL in patients with gastric cancer (GC). Sarcopenia was diagnosed based on the Asian Working Group for Sarcopenia 2019 criteria.

View Article and Find Full Text PDF

The scattering of tiny particles in the atmosphere causes a haze effect on remote sensing images captured by satellites and similar devices, significantly disrupting subsequent image recognition and classification. A generative adversarial network named TRPC-GAN with texture recovery and physical constraints is proposed to mitigate this impact. This network not only effectively removes haze but also better preserves the texture information of the original remote sensing image, thereby enhancing the visual quality of the dehazed image.

View Article and Find Full Text PDF

Tuberculosis (TB) is the leading cause of death from a single infectious agent. The burden is highest in some low- and middle-income countries. One-quarter of the world's population is estimated to have been infected with TB, which is the seedbed for progressing from TB infection to the deadly and contagious disease itself.

View Article and Find Full Text PDF

EEG-based emotion recognition using multi-scale dynamic CNN and gated transformer.

Sci Rep

December 2024

School of Electronic Information and Electrical Engineering, Yangtze University, Jingzhou, 434100, Hubei, China.

Emotions play a crucial role in human thoughts, cognitive processes, and decision-making. EEG has become a widely utilized tool in emotion recognition due to its high temporal resolution, real-time monitoring capabilities, portability, and cost-effectiveness. In this paper, we propose a novel end-to-end emotion recognition method from EEG signals, called MSDCGTNet, which is based on the Multi-Scale Dynamic 1D CNN and the Gated Transformer.

View Article and Find Full Text PDF

The Quantum Computing for Drug Discovery Challenge, held at the 42nd International Conference on Computer-Aided Design (ICCAD) in 2023, was a multi-month, research-intensive competition. Over 70 teams from more than 65 organizations from 12 different countries registered, focusing on the use of quantum computing for drug discovery. The challenge centered on designing algorithms to accurately estimate the ground state energy of molecules, specifically OH+, using quantum computing techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!