Bacteria employ bacteriocins for interference competition in microbial ecosystems. Colicin Ib (ColIb), a pore-forming bacteriocin, confers a significant fitness benefit to Salmonella enterica serovar Typhimurium (S. Tm) in competition against commensal Escherichia coli in the gut. ColIb is released from S. Tm into the environment, where it kills susceptible competitors. However, colicin-specific release proteins, as they are known for other colicins, have not been identified in case of ColIb. Thus, its release mechanism has remained unclear. In the current study, we have established a new link between ColIb release and lysis activity of temperate, lambdoid phages. By the use of phage-cured S. Tm mutant strains, we show that the presence of temperate phages and their lysis genes is necessary and sufficient for release of active ColIb into the culture supernatant. Furthermore, phage-mediated lysis significantly enhanced S. Tm fitness in competition against a ColIb-susceptible competitor. Finally, transduction with the lambdoid phage 933W rescued the defect of E. coli strain MG1655 with respect to ColIb release. In conclusion, ColIb is released from bacteria in the course of phage lysis. Our data reveal a new mechanism for colicin release and point out a novel function of temperate phages in enhancing colicin-dependent bacterial fitness.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.13077DOI Listing

Publication Analysis

Top Keywords

temperate phages
12
colib release
12
salmonella enterica
8
enterica serovar
8
serovar typhimurium
8
colib released
8
colib
7
release
6
temperate
4
phages promote
4

Similar Publications

Phages Affect Soil Dissolved Organic Matter Mineralization by Shaping Bacterial Communities.

Environ Sci Technol

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.

Viruses are considered to regulate bacterial communities and terrestrial nutrient cycling, yet their effects on bacterial metabolism and the mechanisms of carbon (C) dynamics during dissolved organic matter (DOM) mineralization remain unknown. Here, we added active and inactive bacteriophages (phages) to soil DOM with original bacterial communities and incubated them at 18 or 23 °C for 35 days. Phages initially (1-4 days) reduced CO efflux rate by 13-21% at 18 °C and 3-30% at 23 °C but significantly ( < 0.

View Article and Find Full Text PDF

Auxiliary metabolic genes encoded by bacteriophages can influence host metabolic function during infection. In temperate phages, auxiliary metabolic genes may increase host fitness when integrated as prophages into the host genome. However, little is known about the contribution of prophage-encoded auxiliary metabolic genes to host metabolic properties.

View Article and Find Full Text PDF

Background: Viruses that infect prokaryotes (phages) constitute the most abundant group of biological agents, playing pivotal roles in microbial systems. They are known to impact microbial community dynamics, microbial ecology, and evolution. Efforts to document the diversity, host range, infection dynamics, and effects of bacteriophage infection on host cell metabolism are extremely underexplored.

View Article and Find Full Text PDF

The dissemination of antibiotic resistance genes (ARGs) in activated sludge (AS) systems poses significant environmental and public health challenges. The role of viruses, primarily bacteriophages, in storing and spreading ARGs in AS systems remains largely unexplored. This study characterized the viral community, virus-associated ARGs (vir_ARGs), and mobile genetic elements (MGEs) of aerobic AS viromes from eight wastewater treatment plants (WWTPs) in eastern China.

View Article and Find Full Text PDF

In this study, we identify and characterize a novel phage-inducible chromosomal island found in commensal Escherichia coli MP1. This novel element, EcCIMP1, is induced and mobilized by the temperate helper phage vB_EcoP_Kapi1. EcCIMP1 contributes to superinfection immunity against its helper phage, impacting bacterial competition outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!