While nucleic acid amplification tests have great potential as tools for rapid diagnostics, complicated sample preparation requirements inhibit their use in near-patient diagnostics and low-resource-setting applications. Recent advancements in nucleic acid purification have leveraged pH-modulated charge switching polymers to reduce the number of steps required for sample preparation. The polycation chitosan (pKa 6.4) has been used to efficiently purify DNA by binding nucleic acids in acidic buffers and then eluting them at a pH higher than 8.0. Though it is an improvement over conventional methods, this multistep procedure has not transformed the application of nucleic acid amplification assays. Here we describe a simpler approach using magnetic chitosan microparticles that interact with DNA in a manner that has not been reported before. The microparticles capture DNA at a pH optimal for PCR (8.5) just as efficiently as at low pH. Importantly, the captured DNA is still accessible by polymerase, enabling direct amplification from the microparticles. We demonstrate quantitative PCR from DNA captured on the microparticles, thus eliminating nearly all of the sample preparation steps. We anticipate that this new streamlined method for preparing DNA for amplification will greatly expand the diagnostic applications of nucleic acid amplification tests.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b03006DOI Listing

Publication Analysis

Top Keywords

nucleic acid
16
acid amplification
12
sample preparation
12
direct amplification
8
chitosan microparticles
8
amplification tests
8
dna
7
amplification
6
microparticles
5
nucleic
5

Similar Publications

Background/aims: Certain sociodemographic groups are routinely underrepresented in clinical trials, limiting generalisability. Here, we describe the extent to which enriched enrolment approaches yielded a diverse trial population enriched for older age in a randomised controlled trial of a blood-based multi-cancer early detection test (NCT05611632).

Methods: Participants aged 50-77 years were recruited from eight Cancer Alliance regions in England.

View Article and Find Full Text PDF

Unveiling the role of miRNAs in Diminished Ovarian Reserve: an in silico network approach.

Syst Biol Reprod Med

December 2025

Department of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.

MicroRNAs (miRNAs) have acquired an increased recognition to unravel the complex molecular mechanisms underlying Diminished Ovarian Reserve (DOR), one of the main responsible for infertility. To investigate the impact of miRNA profiles in granulosa cells and follicular fluid, crucial players in follicle development, this study employed a computational network theory approach to reconstruct potential pathways regulated by miRNAs in granulosa cells and follicular fluid of women suffering from DOR. Available data from published research were collected to create the FGC_MiRNome_MC, a representation of miRNA target genes and their interactions.

View Article and Find Full Text PDF

tiRNA-Gln-CTG is Involved in the Regulation of Trophoblast Cell Function in Pre-eclampsia and Serves as a Potent Biomarker.

Front Biosci (Landmark Ed)

January 2025

Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, 210000 Nanjing, Jiangsu, China.

Background: Pre-eclampsia (PE) is a gestational disorder that significantly endangers maternal and fetal health. Transfer ribonucleic acid (tRNA)-derived small RNAs (tsRNAs) are important in the progression and diagnosis of various diseases. However, their role in the development of PE is unclear.

View Article and Find Full Text PDF

Background: Hypoxia-inducible factor 1 alpha (HIF-1α) and its related vascular endothelial growth factor (VEGF) may play a significant role in atherosclerosis and their targeting is a strategic approach that may affect multiple pathways influencing disease progression. This study aimed to perform a systematic review to reveal current evidence on the role of HIF-1α and VEGF immunophenotypes with other prognostic markers as potential biomarkers of atherosclerosis prognosis and treatment efficacy.

Methods: We performed a systematic review of the current literature to explore the role of HIF-1α and VEGF protein expression along with the relation to the prognosis and therapeutic strategies of atherosclerosis.

View Article and Find Full Text PDF

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!