Optical waveguides simultaneously transport light at different colors, forming the basis of fiber-optic telecommunication networks that shuttle data in dozens of spectrally separated channels. Here, we reimagine this wavelength division multiplexing (WDM) paradigm in a novel context--the differentiated detection and identification of single influenza viruses on a chip. We use a single multimode interference (MMI) waveguide to create wavelength-dependent spot patterns across the entire visible spectrum and enable multiplexed single biomolecule detection on an optofluidic chip. Each target is identified by its time-dependent fluorescence signal without the need for spectral demultiplexing upon detection. We demonstrate detection of individual fluorescently labeled virus particles of three influenza A subtypes in two implementations: labeling of each virus using three different colors and two-color combinatorial labeling. By extending combinatorial multiplexing to three or more colors, MMI-based WDM provides the multiplexing power required for differentiated clinical tests and the growing field of personalized medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4620877PMC
http://dx.doi.org/10.1073/pnas.1511921112DOI Listing

Publication Analysis

Top Keywords

wavelength division
8
division multiplexing
8
three colors
8
detection
5
optofluidic wavelength
4
multiplexing
4
multiplexing single-virus
4
single-virus detection
4
detection optical
4
optical waveguides
4

Similar Publications

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

The recent discovery of nonvisual photoreceptors in various organs has raised expectations for uncovering their roles and underlying mechanisms. In this work, we identified a previously unrecognized hormone-releasing mechanism in the pituitary of the Japanese rice fish (medaka) induced by light. Ca imaging analysis revealed that melanotrophs, a type of pituitary endocrine cell that secretes melanocyte-stimulating hormone, robustly increase the concentration of intracellular Ca during short-wavelength light exposure.

View Article and Find Full Text PDF

Development of Betalain-immobilized polylactic acid nanofibers as a green and sustainable sensor for toxic ammonia.

Int J Biol Macromol

December 2024

National Research Centre (Scopus Affiliation ID 60014618), Textile Industries Research Division, Pre-treatment and Finishing of Cellulose Based Textiles Department, 33 El-Buhouth St., (former El-Tahrir St.), Dokki, P.O. 12622, Giza, Egypt.

Ammonia has been an important industrial colorless agent. Exposure to gaseous ammonia results in organ damage or even death. Herein, an environmentally friendly colorimetric detector for aqueous and gaseous ammonia was prepared utilizing vapochromic polylactic acid nanofibers.

View Article and Find Full Text PDF

Synthesis of an antimicrobial chitosan film impregnated with ZnO nanoparticles phytosynthesized with Ruta graveolens plant extract.

Microb Pathog

December 2024

Tecnológico Nacional de México / Instituto Tecnológico de Toluca, División de Estudios de Posgrado e Investigación, Av. Tecnológico S/N Col. Agrícola Bellavista, Metepec, México, C.P. 52149.

In this study, biopolymer of chitosan-based films were synthesized, which were impregnated with zinc oxide nanoparticles (ZnO NPs) at concentrations of 0, 1, 5 and 10 % w:v to obtain a film with microbicide properties and non-toxic for humans. The ZnO NPs were phytosynthesized with ethanolic extract of Ruta graveolens, by UV-Vis spectrophotometry and Tauc equation were estimated their Band gap energy=3.37 eV at wavelength of 302 nm.

View Article and Find Full Text PDF

An automatic code generated C++/HIP/CUDA implementation of the (auxiliary) Fock, or Kohn-Sham, matrix construction for execution in GPU-accelerated hardware environments is presented. The module is developed as part of the quantum chemistry software package VeloxChem, employing localized Gaussian atomic orbitals. The performance and scaling characteristics are analyzed in view of the specific requirements for self-consistent field optimization and response theory calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!