Exercise training influences phospholipid fatty acid composition in skeletal muscle and these changes are associated with physiological phenotypes; however, the molecular mechanism of this influence on compositional changes is poorly understood. Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a nuclear receptor coactivator, promotes mitochondrial biogenesis, the fiber-type switch to oxidative fibers, and angiogenesis in skeletal muscle. Because exercise training induces these adaptations, together with increased PGC-1α, PGC-1α may contribute to the exercise-mediated change in phospholipid fatty acid composition. To determine the role of PGC-1α, we performed lipidomic analyses of skeletal muscle from genetically modified mice that overexpress PGC-1α in skeletal muscle or that carry KO alleles of PGC-1α. We found that PGC-1α affected lipid profiles in skeletal muscle and increased several phospholipid species in glycolytic muscle, namely phosphatidylcholine (PC) (18:0/22:6) and phosphatidylethanolamine (PE) (18:0/22:6). We also found that exercise training increased PC (18:0/22:6) and PE (18:0/22:6) in glycolytic muscle and that PGC-1α was required for these alterations. Because phospholipid fatty acid composition influences cell permeability and receptor stability at the cell membrane, these phospholipids may contribute to exercise training-mediated functional changes in the skeletal muscle.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4655985 | PMC |
http://dx.doi.org/10.1194/jlr.M060533 | DOI Listing |
Lipids Health Dis
January 2025
Department of Orthopedics, The 921st Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, People's Republic of China.
Background: The metabolic score for visceral fat (METS-VF) is a recently identified index for evaluating visceral fat, also referred to as abdominal obesity. The skeletal muscle mass index (SMI) serves as a critical measure for assessing muscle mass and sarcopenia. Both obesity and the reduction of muscle mass can significantly affect human health.
View Article and Find Full Text PDFVet Clin North Am Equine Pract
January 2025
Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA.
Many myopathies in horses can be managed by exercise regimes and dietary modifications. This includes modifying the amount of nonstructural carbohydrate, fat, amino acids, vitamin E, and selenium based on the horse's specific myopathy, metabolic status, exercise program, and optimal body weight. Because dietary recommendations differ substantially between myopathies, it is imperative to establish a specific diagnosis.
View Article and Find Full Text PDFEur J Sport Sci
February 2025
Graduate School of Sports and Health Studies, Hosei University, Tokyo, Japan.
The effects of flywheel (FW) training on jump performance, muscle function, and muscle mass in athletes have not been fully clarified. The purpose of the present study was to evaluate the effects of an 8-week FW training program on jump performance, stretch-shortening cycle (SSC) function, muscle strength, peak power and muscle thickness in collegiate basketball players. Twenty male college basketball players (mean age: 19.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Internal Medicine, RG Kar Medical College and Hospital, Kolkata, West Bengal, India.
Hoffmann syndrome, a rare manifestation of hypothyroid myopathy in adults, is characterised by muscle weakness, stiffness and pseudohypertrophy. Here, we report the case of a middle-aged man who presented with progressive weakness in proximal muscles (in the form of difficulty in climbing stairs, rising from a seated position, combing hair and lifting objects) and leg swelling for 6 months. Physical examination revealed pseudohypertrophy of calf muscles with pronounced symmetric weakness in proximal upper and lower limbs.
View Article and Find Full Text PDFSci Rep
January 2025
Graduate School of Interdisciplinary Science and Engineering of Health Systems, Okayama University, Okayama, 700-0082, Japan.
We explore the correlation between muscle viscoelasticity and displacement mechanomyography (DMMG) during passive joint movement. Current methods for assessing muscle viscoelasticity (which is essential for rehabilitation and sports conditioning) are limited in terms of simplicity, objectivity, and portability. We introduce a novel methodology employing DMMG during passive pedaling to evaluate these properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!