In cavernous sinus (CS) surgery, venous complication may occur in some types of venous drainage. The sphenobasal vein (SBV) drains from the superficial middle cerebral vein (SMCV) to the pterygoid venous plexus at the temporal skull base. A frontotemporal epi- and interdural approach (Dolenc approach), which is one of the CS approaches, may damage the SBV's route. We report a case of intracavernous trigeminal schwannoma that contained the SBV and discuss our modified surgical procedure that combined epi- and subdural approaches to preserve the SBV. A 64-year-old man complained of right progressive oculomotor palsy and was referred to our hospital for surgery. MR images revealed a hemorrhagic tumor in the right CS. Three-dimensional venography revealed that the SMCV drained into the pterygoid venous plexus via the SBV. After identifying the first branch of the trigeminal nerve epidurally, we incised the dura linearly along the sylvian fissure and entered the subdural space to visualize the SBV. The incision was continued to the meningeal dura of the lateral wall of the CS along the superior margin of the first branch of the trigeminal nerve, and the Parkinson's triangle was opened from the subdural side. The tumor was grossly totally removed, and the SBV was preserved. In conclusion, a frontotemporal epi- and subdural approach to the intracavernous trigeminal schwannoma can effectively preserve the SBV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10143-015-0670-y | DOI Listing |
Subcell Biochem
January 2025
Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences (ICB), Universidad Andres Bello, Santiago, Chile.
Healthy brain functioning requires a continuous fine-tuning of gene expression, involving changes in the epigenetic landscape and 3D chromatin organization. Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD) are three multifactorial neurodegenerative diseases (NDDs) that are partially explained by genetics (gene mutations and genetic risk factors) and influenced by non-genetic factors (i.e.
View Article and Find Full Text PDFGenes (Basel)
November 2023
Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia.
Brain Behav
December 2023
Laboratory for Epilepsy Research, KU Leuven and Department of Neurology, University Hospitals Leuven, Leuven, Belgium.
Introduction: Subclinical epileptiform activity (SEA) and sleep disturbances are frequent in Alzheimer's disease (AD). Both have an important relation to cognition and potential therapeutic implications. We aimed to study a possible relationship between SEA and sleep disturbances in AD.
View Article and Find Full Text PDFJ Pers Med
September 2023
Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain.
The expanded GGGGCC hexanucleotide repeat (HRE) in the non-coding region of the gene (C9ORF72-HRE) is the most common genetic cause of familial forms of amyotrophic lateral sclerosis (ALS), FTD, and concurrent ALS and FTD (ALS-FTD), in addition to contributing to the sporadic forms of these diseases. Both syndromes overlap not only genetically, but also sharing similar clinical and neuropathological findings, being considered as a spectrum. In this paper we describe the clinical-genetic findings in a Basque family with different manifestations within the spectrum, our difficulties in reaching the diagnosis, and a narrative review, carried out as a consequence, of the main features associated with C9ORF72-HRE.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
June 2022
Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
Purpose: Abnormal tau accumulation within the brain plays an important role in tauopathies such as Alzheimer's disease and frontotemporal dementia. High-resolution imaging of tau deposits at the whole-brain scale in animal disease models is highly desired.
Methods: We approached this challenge by non-invasively imaging the brains of P301L mice of 4-repeat tau with concurrent volumetric multi-spectral optoacoustic tomography (vMSOT) at ~ 115 μm spatial resolution using the tau-targeted pyridinyl-butadienyl-benzothiazole derivative PBB5 (i.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!