Post-infarction inflammatory response results in worse remodeling and dysfunction following myocardial infarction (MI). Supression of post-infarction inflammation would be a logical approach of alleviating post-infarction injury and promoting cardiac repair. In this study, we investigated the significance of mTORC1 signaling in the anti-inflammatory activity of regulatory T cells (Tregs) after MI. Using the murine MI model with wild type and Rag1(-/-) mice, we found that the mechanistic target of rapamycin compex 1 (mTORC1) signaling was upregulated in Tregs infiltrating into the infarcted myocardium, rather than in circulating Tregs after MI. The anti-inflammatory activity of infiltrating Tregs was significantly stronger than that of circulating Tregs. This was demonstrated by a higher expression of anti-inflammatory cytokines in the infiltrating Tregs and a robust suppression of proinflammatory cytokine production by macrophages. In an adoptive transfer analysis, compared with normal splenic Tregs, rapamycin-treated splenic Tregs ineffectively suppressed the post-infarction inflammatory response of infiltrating macrophages. In addition, in vitro cultured primary cardiomyocytes treated with mild oxygen glucose deprivation induced mTORC1 activation and a higher anti-inflammatory activity of Tregs in a coculture assay. Our study identified a new mechanism by which infiltrating Tregs subdue post-infarction inflammation. Understanding and utilizing this information would be helpful for designing new therapeutic interventions for MI.

Download full-text PDF

Source
http://dx.doi.org/10.1038/icb.2015.88DOI Listing

Publication Analysis

Top Keywords

mtorc1 signaling
12
inflammatory response
12
anti-inflammatory activity
12
infiltrating tregs
12
tregs
10
regulatory cells
8
myocardial infarction
8
post-infarction inflammatory
8
post-infarction inflammation
8
circulating tregs
8

Similar Publications

Rapamycin protects glucocorticoid-induced glaucoma model mice against trabecular meshwork fibrosis by suppressing mTORC1/2 signaling.

Eur J Pharmacol

January 2025

Affiliated Eye Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Jiangxi Research Institute of Ophthalmology & Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China. Electronic address:

Systemic or local use of glucocorticoids (GCs) can induce pathological elevation of intraocular pressure (IOP), potentially leading to permanent visual loss. Previous studies have demonstrated that rapamycin (Rapa) inhibits the activation of retinal glial cells and the production of neuroinflammation, achieving neuroprotective goals. However, there has been little research on the effect of Rapa on the trabecular meshwork (TM).

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) system is vital to placental development, formation, and function. Alterations in this system in the placenta have been associated with altered fetal growth. However, changes in placental mTOR signaling across gestation are poorly understood.

View Article and Find Full Text PDF

mTOR signalling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner.

J Biol Chem

January 2025

Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden. Electronic address:

The mTOR (mechanistic target of rapamycin) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked SEA complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism.

View Article and Find Full Text PDF

Pseudoachondroplasia (PSACH), a severe dwarfing condition characterized by impaired skeletal growth and early joint degeneration, results from mutations in cartilage oligomeric matrix protein (COMP). These mutations disrupt normal protein folding, leading to the accumulation of misfolded COMP in chondrocytes. The MT-COMP mouse is a murine model of PSACH that expresses D469del human COMP in response to doxycycline and replicates the PSACH chondrocyte and clinical pathology.

View Article and Find Full Text PDF

Interrelation of Natural Polyphenol and Fibrosis in Diabetic Nephropathy.

Molecules

December 2024

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China.

Diabetic nephropathy (DN) is a common and serious complication of diabetes mellitus and a major cause of end-stage renal disease (ESRD). Renal fibrosis, which corresponds to excessive deposition of extracellular matrix and leads to scarring, is a characteristic feature of the various progressive stages of DN. It can trigger various pathological processes leading to the activation of autophagy, inflammatory responses and a vicious circle of oxidative stress and inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!