Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365.

Chembiochem

Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen, Mikrobiologie/Biotechnologie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.

Published: December 2015

Lanthipeptides are ribosomally synthesized and post-translationally modified microbial secondary metabolites. Here, we report the identification and isolation of streptocollin from Streptomyces collinus Tü 365, a new member of class IV lanthipeptides. Insertion of the constitutive ermE* promoter upstream of the lanthipeptide synthetase gene stcL resulted in peptide production. The streptocollin gene cluster was heterologously expressed in S. coelicolor M1146 and M1152 with 3.5- and 5.5-fold increased yields, respectively. The structure and ring topology of streptocollin were determined by high resolution MS/MS analysis. Streptocollin contains four macrocyclic rings, with one lanthionine and three methyllanthionine residues. To the best of our knowledge, this is the first report on the isolation of a class IV lanthipeptide in preparative amounts, and on the successful heterologous expression of a class IV lanthipeptide gene cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201500377DOI Listing

Publication Analysis

Top Keywords

streptomyces collinus
8
collinus tü
8
tü 365
8
gene cluster
8
class iv lanthipeptide
8
streptocollin
5
streptocollin type iv
4
lanthipeptide
4
type iv lanthipeptide
4
lanthipeptide produced
4

Similar Publications

A novel halotolerant actinobacterium, designated as RG38, capable of producing black extracellular melanin pigment on SP2 agar, was isolated from the roots of . Comparative analysis of the 16S rRNA gene sequence revealed the highest similarity to NBRC 12759 (99.3%).

View Article and Find Full Text PDF

Mechanistic Characterisation of Collinodiene Synthase, a Diterpene Synthase from Streptomyces collinus.

Chemistry

November 2023

Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany.

Two homologs of the diterpene synthase CotB2 from Streptomyces collinus (ScCotB2) and Streptomyces iakyrus (SiCotB2) were investigated for their products by in vitro incubations of the recombinant enzymes with geranylgeranyl pyrophosphate, followed by compound isolation and structure elucidation by NMR. ScCotB2 produced the new compound collinodiene, besides the canonical CotB2 product cyclooctat-9-en-7-ol, dolabella-3,7,18-triene and dolabella-3,7,12-triene, while SiCotB2 gave mainly cyclooctat-9-en-7-ol and only traces of dolabella-3,7,18-triene. The cyclisation mechanism towards the ScCotB2 products and their absolute configurations were investigated through isotopic labelling experiments.

View Article and Find Full Text PDF

Background: L-asparaginase II (asnB), a periplasmic protein commercially extracted from E coli and Erwinia, is often used to treat acute lymphoblastic leukemia. L-asparaginase is an enzyme that converts L-asparagine to aspartic acid and ammonia. Cancer cells are dependent on asparagine from other sources for growth, and when these cells are deprived of asparagine by the action of the enzyme, the cancer cells selectively die.

View Article and Find Full Text PDF

The COVID-19 pandemic is still active around the globe despite the newly introduced vaccines. Hence, finding effective medications or repurposing available ones could offer great help during this serious situation. During our anti-COVID-19 investigation of microbial natural products (MNPs), we came across α-rubromycin, an antibiotic derived from ATCC19743, which was able to suppress the catalytic activity (IC = 5.

View Article and Find Full Text PDF

The bio-efficacy of crude ethyl acetate extract, fractions and a compound phenyl acetic acid from the ethyl acetate extract of Streptomyces collinus was evaluated on Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes (Diptera: Culicidae). The larvae were exposed to concentrations of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!