A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593545 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138807 | PLOS |
J Neurophysiol
December 2024
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA.
The dorsolateral prefrontal cortex (DLPFC) plays a crucial role in primate cognition, integrating multimodal information to generate top-down signals for cognitive control. During cognitive tasks, the DLPFC displays activity patterns of exceptional complexity and duration not observed in other cortical areas or species. These activity patterns are likely associated with the unique physiological and morphological properties of primate DLPFC pyramidal neurons (PNs).
View Article and Find Full Text PDFSci Rep
December 2024
BioMag Laboratory, HUS Diagnostic Center, Helsinki University Hospital, University of Helsinki and Aalto University School of Science, Helsinki, Finland.
A novel variant of paired-associative stimulation (PAS) consisting of high-frequency peripheral nerve stimulation (PNS) and high-intensity transcranial magnetic stimulation (TMS) above the motor cortex, called high-PAS, can lead to improved motor function in patients with incomplete spinal cord injury. In PAS, the interstimulus interval (ISI) between the PNS and TMS pulses plays a significant role in the location of the intended effect of the induced plastic changes. While conventional PAS protocols (single TMS pulse often applied with intensity close to resting motor threshold, and single PNS pulse) usually require precisely defined ISIs, high-PAS can induce plasticity at a wide range of ISIs and also in spite of small ISI errors, which is helpful in clinical settings where precise ISI determination can be challenging.
View Article and Find Full Text PDFOcul Surf
December 2024
Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany. Electronic address:
The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA).
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China.
Background: Neurological disorders known as neurodegenerative diseases (NDDs) result in the slow loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS), as well as the collapse of neural networks in terms of structure and function. NDDs are expected to surpass cancer as the second biggest cause of mortality by 2040, according to World Health Organization (WHO) estimations. Neurons cannot effectively regenerate themselves because they are terminally differentiated.
View Article and Find Full Text PDFJ Gen Physiol
January 2025
Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!