Quantifying Neonicotinoid Insecticide Residues Escaping during Maize Planting with Vacuum Planters.

Environ Sci Technol

Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, Ontario N0P 2C0, Canada.

Published: November 2015

Neonicotinoid residues escaping in vacuum-planter exhaust during maize planting were measured in 25 fields in southwestern Ontario in 2013-2014 using filter bags to collect planter exhaust dust and horizontal and vertical sticky traps to collect planter operation-generated dust. Atrazine residues were used to differentiate between neonicotinoid residues originating from seed or from disturbed soil. Recovery rates of seed-applied neonicotinoids in exhaust were 0.014 and 0.365% in 2013 and 2014, respectively, calculated on the basis of neonicotinoid concentrations in preplant soil and seed application rates. Neonicotinoid exhaust emission rates were 0.0036 and 0.1104 g/ha for 2013 and 2014, respectively, with 99.9472 and 99.7820% originating from treated seed in 2013 and 2014, respectively, calculated on the basis of the atrazine marker. Rates of recovery of seed-applied neonicotinoid residues by exhaust filter bags were 0.015 and 0.437% for 2013 and 2014, respectively. Neonicotinoid residues captured on horizontal and vertical traps were 1.10 ng/cm2 (0.1104 g/ha) and 1.45 ng/cm2 (0.0029 g/ha), respectively, with 92.31 and 93.03% originating from treated seed, respectively, representing 0.3896% of the original active ingredient applied to the seed planted. Exposure to pollinators can be best reduced by strategies to keep active ingredient on the seed, below the soil surface, and in the field where applied.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.5b03753DOI Listing

Publication Analysis

Top Keywords

neonicotinoid residues
16
2013 2014
16
residues escaping
8
maize planting
8
filter bags
8
collect planter
8
horizontal vertical
8
2014 calculated
8
calculated basis
8
01104 g/ha
8

Similar Publications

Residue Analysis and Dietary Risk Assessment of 10 Neonicotinoid Insecticides in from Hainan Province of China.

Foods

December 2024

Key Laboratory of Tropical Fruits and Vegetables Quality and Safety, State Administration for Market Regulation, Hainan Academy of Inspection and Testing, Haikou 571199, China.

In this study, residues of 10 neonicotinoid insecticides were tested with 143 fresh samples of using the QuEChERS method combined with UPLC-MS/MS. Based on the residue results, the point estimation method was used to assess dietary risks for adults and children, and the cumulative risk was assessed according to the hazard index () and relative potency factor () methods. The results showed that 71 out of 143 samples of fresh sold in Hainan tested positive for neonicotinoid insecticides, with a detection rate of 49.

View Article and Find Full Text PDF

Beeswax, an FDA-approved component, has been extensively applied in feed, pharmaceutical, and food industries. The occurrence of neonicotinoid pesticides in beehive systems and their residues in beeswax have caused safety risks. Therefore, establishing a detection method for neonicotinoid pesticide residues in beeswax is crucial for ensuring its quality.

View Article and Find Full Text PDF

Neonicotinoid insecticides have been widely applied in modern agriculture to improve crop productivity, but their residues have adverse impacts on the environment and human health. Hence, to address these issues, a portable self-powered/colorimetric dual-mode sensing platform was developed for the simple, rapid, precise, and sensitive on-site detection of acetamiprid (ATM) residues in vegetables. In this case, a multifunctional bioconjugate with specific recognition capability, excellent enzyme-like activity, and loading capacity is the key to the sensing design.

View Article and Find Full Text PDF

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

January 2025

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

Residue behavior of imidacloprid FS formulation in peanut cultivation system in china and its dietary and ecological risk assessment.

Environ Geochem Health

December 2024

State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No.2, West Yuan-Ming-Yuan Road, Beijing, 100193, China.

Imidacloprid, a key neonicotinoid insecticide for pest control, is widely used in various crops, including peanuts. This study aimed to fill research gaps by analysing the residue behaviour of imidacloprid in peanut fields treated with flowable concentrate for seed treatment (FS) formulations while assessing potential risks to human health and ecosystems. A validated analytical method, using QuEChERS separation and UPLC-MS/MS detection, reliably quantified imidacloprid residues in peanuts and soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!