There is an urgent need to develop nanocarriers for the treatment of glioblastoma multiforme (GBM). Using co-registered positron emission tomography (PET) and magnetic resonance (MR) images, here we performed systematic studies to investigate how a nanocarrier's size affects the pharmacokinetics and biodistribution in rodents with a GBM xenograft. In particular, highly stable, long-circulating three-helix micelles (3HM), based on a coiled-coil protein tertiary structure, were evaluated as an alternative to larger nanocarriers. While the circulation half-life of the 3HM was similar to 110-nm PEGylated liposomes (t1/2=15.5 and 16.5h, respectively), the 20-nm micelles greatly enhanced accumulation within a U87MG xenograft in nu/nu rats after intravenous injection. After accounting for tumor blood volume, the extravasated nanoparticles were quantified from the PET images, yielding ~0.77%ID/cm(3) for the micelles and 0.45%ID/cm(3) for the liposomes. For GBM lesions with a volume greater than 100mm(3), 3HM accumulation was enhanced both within the detectable tumor and in the surrounding brain parenchyma. Further, the nanoparticle accumulation was shown to extend to the margins of the GBM xenograft. In summary, 3HM provides an attractive nanovehicle for carrying treatment to GBM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4688122 | PMC |
http://dx.doi.org/10.1016/j.jconrel.2015.09.057 | DOI Listing |
Neuro Oncol
January 2025
Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen; Tübingen, Germany.
Background: Registered systemic treatment options for glioblastoma patients are limited. The phase II REGOMA trial suggested an improvement of median overall survival in progressive glioblastoma by the multi-tyrosine kinase inhibitor regorafenib. This has not been confirmed by GBM AGILE.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Biological Science and Technology, Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
The blood-brain barrier (BBB) remains a major obstacle for effective delivery of therapeutics to treat central nervous system (CNS) disorders. Although transferrin receptor (TfR)-mediated transcytosis is widely employed for brain drug delivery, the inefficient release of therapeutic payload hinders their efficacy from crossing the BBB. Here, we developed a pH-responsive anti-polyethylene glycol (PEG) × anti-TfR bispecific antibody (pH-PEG engager) that can complex with PEGylated nanomedicine at physiological pH to trigger TfR-mediated transcytosis in the brain microvascular endothelial cells, while rapidly dissociating from PEGylated nanomedicine at acidic endosomes for efficient release of PEGylated nanomedicine to cross the BBB.
View Article and Find Full Text PDFJ Cancer
January 2025
Cancer Prevention and Treatment Institute of Chengdu, Department of Neurosurgery, Chengdu Fifth People's Hospital (The Second Clinical Medical College, Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine), Chengdu 611137, China.
Glioblastoma (GBM), notorious for its poor prognosis, stands as a formidable challenge within the central nervous system tumor category, primarily due to its intricate pathology that encompasses stemness and the epithelial-mesenchymal transition (EMT). The ubiquity of S phase kinase-associated protein 2 (Skp2) overexpression in GBM, a protein implicated in both EMT and stemness traits, correlates with increased drug resistance, elevated tumor grades, and adverse outcomes. This investigation delves into the impact of Raddeanin A (RA), a triterpenoid compound extracted from Anemone raddeana Regel, on GBM, with a special focus on its influence over Skp2 expression levels.
View Article and Find Full Text PDFEur J Pharmacol
December 2024
The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China. Electronic address:
Glioblastoma multiforme (GBM) is a highly heterogeneous and aggressive brain tumor, which presents significant challenges for treatment in clinical settings. Phosphodiesterase 4 (PDE4) inhibitors can prevent the degradation of cAMP and have been used as a potential targeted therapeutic approach for different cancer types. However, their clinical use is restricted by side effects such as nausea and vomiting.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Institute for Excellence in Clinical Medicine of Kunshan First People's Hospital, Soochow University, Suzhou, China.
Gliomas are the most common tumors of the central nervous system, with glioblastoma (GBM) being particularly aggressive and fatal. Current treatments for GBM, including surgery and chemotherapy, are limited by tumor aggressiveness and the blood-brain barrier. Therefore, understanding the molecular mechanisms driving GBM growth is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!