To investigate if the microRNA (miRNA) pathway is required for dendritic cell (DC) development, we assessed the effect of ablating Drosha and Dicer, the two enzymes central to miRNA biogenesis. We found that while Dicer deficiency had some effect, Drosha deficiency completely halted DC development and halted myelopoiesis more generally. This indicated that while the miRNA pathway did have a role, it was a non-miRNA function of Drosha that was particularly critical. Drosha repressed the expression of two mRNAs encoding inhibitors of myelopoiesis in early hematopoietic progenitors. We found that Drosha directly cleaved stem-loop structure within these mRNAs and that this mRNA degradation was necessary for myelopoiesis. We have therefore identified a mechanism that regulates the development of DCs and other myeloid cells.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ni.3293DOI Listing

Publication Analysis

Top Keywords

dendritic cell
8
cell development
8
encoding inhibitors
8
inhibitors myelopoiesis
8
mirna pathway
8
drosha
6
drosha controls
4
controls dendritic
4
development
4
development cleaving
4

Similar Publications

The aqueous zinc metal battery holds great potential for large-scale energy storage due to its safety, low cost, and high theoretical capacity. However, challenges such as corrosion and dendritic growth necessitate controlled zinc deposition. This study employs epitaxy to achieve large-area, dense, and ultraflat zinc plating on textured copper foil.

View Article and Find Full Text PDF

Natural killer (NK) cells can control metastasis through cytotoxicity and IFN-γ production independently of T cells in experimental metastasis mouse models. The inverse correlation between NK activity and metastasis incidence supports a critical role for NK cells in human metastatic surveillance. However, autologous NK cell therapy has shown limited benefit in treating patients with metastatic solid tumors.

View Article and Find Full Text PDF

Purpose: Immunometabolism is pivotal in rheumatoid arthritis (RA) pathogenesis, yet the intricacies of its pathological regulatory mechanisms remain poorly understood. This study explores the complex immunometabolic landscape of RA to identify potential therapeutic targets.

Patients And Methods: We integrated genome-wide association study (GWAS) data involving 1,400 plasma metabolites, 731 immune cell traits, and RA outcomes from over 58,000 participants.

View Article and Find Full Text PDF

Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs.

View Article and Find Full Text PDF

Fabrication and functional validation of a hybrid biomimetic nanovaccine (HBNV) against -mutant melanoma.

Bioact Mater

April 2025

Wellman Center for Photomedicine and Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Cancer nanovaccines hold the promise for personalization, precision, and pliability by integrating all the elements essential for effective immune stimulation. An effective immune response requires communication and interplay between antigen-presenting cells (APCs), tumor cells, and immune cells to stimulate, extend, and differentiate antigen-specific and non-specific anti-tumor immune cells. The versatility of nanomedicine can be adapted to deliver both immunoadjuvant payloads and antigens from the key players in immunity (i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!