The ability to maintain information in visual working memory (VWM) in the presence of ongoing visual input allows for flexible goal-directed behavior. Previous evidence suggests that categorical overlap between visual distractors and the contents of VWM is associated with both the degree to which distractors disrupt VWM performance and activation among fronto-parietal regions of cortex. While within-category distractors have been shown to elicit a greater response in ventral fronto-parietal regions, to date, no study has linked distractor-evoked response of these regions to VWM performance costs. Here we examined the contributions of ventral fronto-parietal cortex to the disruption of VWM storage by manipulating memoranda-distractor similarity. Our results revealed that the degree of activation across cortex was graded in a manner suggesting that similarity between the contents of VWM and visual distractors influenced distractor processing. While abrupt visual onsets failed to engage ventral fronto-parietal regions during VWM maintenance, objects sharing categorical- (Related objects) and feature-overlap (Matched objects) with VWM elicited a significant response in the right TPJ and right AI. Of central relevance, the magnitude of activation in the right AI elicited by both types of distractor objects subsequently predicted costs to binding change detection accuracy. In addition, Related and Matched distractors differentially affected ventral-dorsal connectivity between the right AI and dorsal parietal regions, uniquely contributing to disruption of VWM storage. Together, our current results implicate activation of ventral fronto-parietal cortex in disruption of VWM storage, and disconnection between ventral frontal and dorsal parietal cortices as a mechanism to protect the contents of VWM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2015.09.056DOI Listing

Publication Analysis

Top Keywords

ventral fronto-parietal
20
contents vwm
12
fronto-parietal regions
12
disruption vwm
12
vwm storage
12
vwm
11
visual working
8
working memory
8
visual distractors
8
vwm performance
8

Similar Publications

Shared and disorder-specific large-scale intrinsic and effective functional network connectivities in postpartum depression with and without anxiety.

Cereb Cortex

December 2024

State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, No. 727 Jingming South Road, Chenggong District, Kunming 650500, China.

Postpartum depression and postpartum depression with anxiety, which are highly prevalent and debilitating disorders, become a growing public concern. The high overlap on the symptomatic and neurobiological levels led to ongoing debates about their diagnostic and neurobiological uniqueness. Delineating the shared and disorder-specific intrinsic functional connectivities and their causal interactions is fundamental to precision diagnosis and treatment.

View Article and Find Full Text PDF

Childhood exposure to social disadvantage is a major risk factor for psychiatric disorders and poor developmental, educational, and occupational outcomes, presumably because adverse exposures alter the neurodevelopmental processes that contribute to risk trajectories. Yet, given the limited social mobility in the United States and other countries, childhood social disadvantage is frequently preceded by maternal social disadvantage during pregnancy, potentially altering fetal brain development during a period of high neuroplasticity through hormonal, microbiome, epigenetic, and immune factors that cross the placenta and fetal blood-brain barrier. The current study examines prenatal social disadvantage to determine whether these exposures in utero are associated with alterations in functional brain networks as early as birth.

View Article and Find Full Text PDF

Neural correlates of sensorimotor adaptation: Thalamic contributions to learning from sensory prediction error.

Neuroimage

December 2024

Department of Cognitive Neurology, University Medicine Göttingen, Göttingen, Germany; Cognitive Neurology Group, Department of Cognitive Neuroscience, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany. Electronic address:

Understanding the neural mechanism of sensorimotor adaptation is essential to reveal how the brain learns from errors, a process driven by sensory prediction errors. While the previous literature has focused on cortical and cerebellar changes, the involvement of the thalamus has received less attention. This functional magnetic resonance imaging study aims to explore the neural substrates of learning from sensory prediction errors with an additional focus on the thalamus.

View Article and Find Full Text PDF

Neural bases of social facilitation and inhibition: how peer presence affects elementary eye movements.

Soc Cogn Affect Neurosci

November 2024

IMPACT Team, Lyon Neuroscience Research Center, INSERM, U1028, CNRS, UMR5292, University Lyon, F-69000 Lyon, France.

Social Facilitation/Inhibition (SFI) refers to how others' presence influences task performance positively or negatively. Our previous study revealed that peer presence modulated saccadic eye movements, a fundamental sensorimotor activity. Pro- and anti-saccades were either facilitated or inhibited depending on trial block complexity (Tricoche et al.

View Article and Find Full Text PDF
Article Synopsis
  • * Using data from over 6,000 youths, researchers applied advanced analytical techniques to identify and classify sex differences in personalized functional networks.
  • * Findings reveal that significant differences exist in brain network topography related to sex, particularly in specific brain networks, and these differences correlate with the expression of certain genes, especially X-linked genes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!