The effects of ionizing radiation on biological cells have been reported in several literatures. Most of them were mainly concerned with doses greater than 0.01 Gy and were also concerned with gamma rays. On the other hand, the studies on very low dose fast neutrons (VLDFN) are rare. In this study, we have investigated the effects of VLDFN on cell membrane and protein secondary structure of rat erythrocytes. Twelve female Wistar rats were irradiated with neutrons of total dose 0.009 Gy (241Am-Be, 0.2 mGy/h) and twelve others were used as control. Blood samples were taken at the 0, 4th, 8th, and 12th days postirradiation. Fourier transform infrared (FTIR) spectra of rat erythrocytes were recorded. Second derivative and curve fitting were used to analysis FTIR spectra. Hierarchical cluster analysis (HCA) was used to classify group spectra. The second derivative and curve fitting of FTIR spectra revealed that the most significant alterations in the cell membrane and protein secondary structure upon neutron irradiation were detected after 4 days postirradiation. The increase in membrane polarity, phospholipids chain length, packing, and unsaturation were noticed from the corresponding measured FTIR area ratios. This may be due to the membrane lipid peroxidation. The observed band shift in the CH2 stretching bands toward the lower frequencies may be associated with the decrease in membrane fluidity. The curve fitting of the amide I revealed an increase in the percentage area of α-helix opposing a decrease in the β-structure protein secondary structure, which may be attributed to protein denaturation. The results provide detailed insights into the VLDFN effects on erythrocytes. VLDFN can cause an oxidative stress to the irradiated erythrocytes, which appears clearly after 4 days postirradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593584 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139854 | PLOS |
Biosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFNanotechnology
January 2025
Nanjing Medical University, Department of Neurosurgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Nanjing, 210029, CHINA.
Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.
View Article and Find Full Text PDFACS Infect Dis
January 2025
Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul 79117-900, Brazil.
Plants provide an abundant source of potential therapeutic agents, including a diverse array of compounds, such as cyclotides, which are peptides known for their antimicrobial activity. Cyclotides are multifaceted molecules with a wide range of biological activities. Their unique topology forms a head-to-tail cyclic structure reinforced by a cysteine knot, which confers chemical and thermal stability.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.
View Article and Find Full Text PDFChem Biol Drug Des
January 2025
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.
Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!