A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bacteria Transport in a Soil-Based Wastewater Treatment System under Simulated Operational and Climate Change Conditions. | LitMetric

Bacteria removal efficiencies in a conventional soil-based wastewater treatment system (OWTS) have been modeled to elucidate the fate and transport of bacteria under environmental and operational conditions that might be expected under changing climatic conditions. The HYDRUS 2D/3D software was used to model the impact of changing precipitation patterns, bacteria concentrations, hydraulic loading rates (HLRs), and higher subsurface temperatures at different depths and soil textures. Modeled effects of bacteria concentration shows that greater depth of treatment was required in coarser soils than in fine-textured ones to remove . The initial removal percentage was higher when HLR was lower, but it was greater when HLR was higher. When a biomat layer was included in the transport model, the performance of the system improved by up to 12.0%. Lower bacteria removal (<5%) was observed at all depths under the influence of precipitation rates ranging from 5 to 35 cm, and 35-cm rainfall combined with a 70% increase in HLR. Increased subsurface temperature (23°C) increased bacteria removal relative to a lower temperature range (5-20°C). Our results show that the model is able to effectively simulate bacteria removal and the effect of precipitation and temperature in different soil textures. It appears that the performance of OWTS may be impacted by changing climate.

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2014.12.0547DOI Listing

Publication Analysis

Top Keywords

soil-based wastewater
8
wastewater treatment
8
treatment system
8
bacteria removal
8
bacteria
6
bacteria transport
4
transport soil-based
4
system simulated
4
simulated operational
4
operational climate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!