Cervical cancer is caused by infection with high risk human papillomavirus (HR-HPV). Inducible nitric oxide synthase (iNOS), a soluble factor involved in chronic inflammation, may modulate cervical cancer risk among HPV infected women. The aim of the study was to measure and correlate plasma nitrite/nitrate levels with tissue specific expression of iNOS mRNA among women with different grades of cervical lesions and cervical cancer. Tissue biopsy and plasma specimens were collected from 120 women with cervical neoplasia or cancer (ASCUS, LSIL, HSIL and invasive cancer) and 35 women without cervical abnormalities. Inducible nitric oxide synthase (iNOS) mRNA from biopsy and plasma nitrite/nitrate levels of the same study subjects were measured. Single nucleotide polymorphism (SNP) analysis was performed on the promoter region and Ser608Leu (rs2297518) in exon 16 of the iNOS gene. Differences in iNOS gene expression and plasma nitrite/nitrate levels were compared across disease stage using linear and logistic regression analysis. Compared to normal controls, women diagnosed with HSIL or invasive cancer had a significantly higher concentration of plasma nitrite/nitrate and a higher median fold-change in iNOS mRNA gene expression. Genotyping of the promoter region showed three different variations: A pentanucleotide repeat (CCTTT) n, -1026T > G (rs2779249) and a novel variant -1153T > A. These variants were associated with increased levels of plasma nitrite/nitrate across all disease stages. The higher expression of iNOS mRNA and plasma nitrite/nitrate among women with pre-cancerous lesions suggests a role for nitric oxide in the natural history of cervical cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.niox.2015.09.005DOI Listing

Publication Analysis

Top Keywords

plasma nitrite/nitrate
28
nitrite/nitrate levels
16
nitric oxide
16
cervical cancer
16
inos mrna
16
inducible nitric
12
gene expression
12
women cervical
12
cervical
8
cervical abnormalities
8

Similar Publications

Article Synopsis
  • Sepsis and septic shock are critical health issues linked to high mortality rates, with the inflammatory response playing a major role in organ dysfunction, particularly affecting the cardiovascular system through severe hypotension.* -
  • Nitric oxide (NO) is a pivotal factor in both inflammation and cardiovascular issues during sepsis, influencing proteins through post-translational modifications, and DTNB is utilized to study these interactions by targeting reactive thiol groups in proteins.* -
  • In experiments with sepsis-induced mice, DTNB treatment reduced lung vascular leakage, lowered nitrite/nitrate levels, and diminished inflammatory markers like IL-1ß, suggesting its potential benefits in managing sepsis-induced inflammation.*
View Article and Find Full Text PDF
Article Synopsis
  • - The research explored the effectiveness of an edible film (EF) made with olive leaf extract (OLE) and plasma-activated water (PAW) in extending the shelf life and maintain the quality of cooked meat products stored at 4°C for 14 days.
  • - Key findings showed that the addition of OLE in the EF improved antioxidant properties and prevented lipid oxidation in cooked meat, while PAW treatment affected the physicochemical properties of distilled water but did not significantly change the color values of the meat products.
  • - The study suggests that using OLE, a by-product of olive oil production, in biodegradable active packaging could be a promising approach to preserve ready-to-eat (RTE) cooked meat products effectively. *
View Article and Find Full Text PDF

Inorganic nitrate (NO) and nitrate-rich foods have been shown to exert antioxidative effects and lower blood pressure in experimental animal models and human clinical studies. The specific handling of nitrate, including its enterosalivary recirculation, secretion into saliva, oral microbial reduction to nitrite (NO), and the pH-dependent nitrosative capacity in the stomach have all been recognized as being important for nitrate's beneficial effects. Obesity is of major health concern worldwide and associated with increased cardiovascular risk; whether nitrate lowers blood pressure and improves endothelial function in this setting has not been investigated.

View Article and Find Full Text PDF

Investigating plasma activated water as a sustainable treatment for improving growth and nutrient uptake in maize and pea plant.

Plant Physiol Biochem

November 2024

Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, Republic of Korea. Electronic address:

Article Synopsis
  • This study utilized an atmospheric pressure air plasma jet (APAPJ) to create plasma-activated water (PAW) aimed at improving the growth of maize (monocot) and pea (dicot) seeds.
  • It analyzed various diagnostic parameters of the APAPJ by varying air feed rates and plasma treatment times to examine the generation of reactive oxygen and nitrogen species (RONS) and the physicochemical properties of PAW.
  • Results showed that soaking seeds in PAW and irrigating with PAW significantly enhanced germination and growth, with optimized treatment times of 6 minutes for maize and 2 minutes for peas, highlighting non-thermal plasma as a promising eco-friendly method for boosting plant health and nutrient content.
View Article and Find Full Text PDF

Montmorency cherry (MC) can improve endurance performance, but optimal pre-exercise timing of supplementation and influence of training status on efficacy are unknown. We investigated the effect of MC concentrate ingestion between 30- and 150-min pre-exercise in trained and recreational cyclists on 15-km time trial (TT) performance and exercise economy. Twenty participants (10 recreationally active, RA; 10 trained, T) completed 10 min of steady-state exercise (SSE) at 40%Δ (SSE) and a TT on four separate occasions following an unsupplemented (US), 30-, 90- or 150-min pre-exercise Montmorency cherry concentrate (MCC) supplementation conditions (MCC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!