Correlation of the surface physicochemical properties of nanoparticles with their interactions with biosystems provides key foundational data for nanomedicine. We report here the systematic synthesis of 2, 4, and 6 nm core gold nanoparticles (AuNP) featuring neutral (zwitterionic), anionic, and cationic headgroups. The cellular internalization of these AuNPs was quantified, providing a parametric evaluation of charge and size effects. Contrasting behavior was observed with these systems: with zwitterionic and anionic particles, uptake decreased with increasing AuNP size, whereas with cationic particles, uptake increased with increasing particle size. Through mechanistic studies of the uptake process, we can attribute these opposing trends to a surface-dictated shift in uptake pathways. Zwitterionic NPs are primarily internalized through passive diffusion, while the internalization of cationic and anionic NPs is dominated by multiple endocytic pathways. Our study demonstrates that size and surface charge interact in an interrelated fashion to modulate nanoparticle uptake into cells, providing an engineering tool for designing nanomaterials for specific biological applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5848075PMC
http://dx.doi.org/10.1021/acsnano.5b03521DOI Listing

Publication Analysis

Top Keywords

size surface
8
gold nanoparticles
8
zwitterionic anionic
8
particles uptake
8
uptake
6
interplay size
4
surface functionality
4
functionality cellular
4
cellular uptake
4
uptake sub-10
4

Similar Publications

Multi-omic quantitative trait loci link tandem repeat size variation to gene regulation in human brain.

Nat Genet

January 2025

Division of Computational Biomedicine, Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.

Tandem repeat (TR) size variation is implicated in ~50 neurological disorders, yet its impact on gene regulation in the human brain remains largely unknown. In the present study, we quantified the impact of TR size variation on brain gene regulation across distinct molecular phenotypes, based on 4,412 multi-omics samples from 1,597 donors, including 1,586 newly sequenced ones. We identified ~2.

View Article and Find Full Text PDF

Purpose: To report outcomes in hepatocellular carcinoma (HCC) patients with lobar and segmental vascular invasion treated with resin Yttrium-90 transarterial radioembolization (Y90-TARE) with single-compartment MIRD (Medical Internal Radiation Dose) model.

Materials And Methods: This was a retrospective IRB approved study of patients with a diagnosis of HCC with vascular invasion undergoing resin Y90-TARE from 2014 to 2022 (n = 61). Patients with Body Surface Area dosimetry (n = 20), main portal vein invasion (n = 6) and patients with an ECOG of > 2 were excluded (n = 1) with a final cohort of 34 patients.

View Article and Find Full Text PDF

Objectives: To characterize two experimental zirconia bilayer materials compared to their monolithic controls, before and after hydrothermal aging.

Methods: Commercial zirconia powders were utilized to fabricate two bilayer materials: 3Y-TZP+ 5Y-PSZ (3Y+5Y/BI) and 4Y-PSZ+ 5Y-PSZ (4Y+5Y/BI), alongside control groups 3Y-TZP (3Y/C), 4Y-PSZ (4Y/C), and 5Y-PSZ (5Y/C). Compacted specimens were sintered (1550 °C- 2 h, 3 °C/min), and half of them underwent hydrothermal aging (134 °C-20h, 2.

View Article and Find Full Text PDF

Bougainvillea glabra-mediated synthesis of Zr₃O and chitosan-coated zirconium oxide nanoparticles: Multifunctional antibacterial and anticancer agents with enhanced biocompatibility.

Int J Biol Macromol

January 2025

Department of Chemistry, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India; Functional Materials Laboratory, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, 641112, India. Electronic address:

The effectiveness and safety of nanomaterials (NMs) are essential for their use in healthcare. This study focuses on creating NPs with multifunctional antibacterial and anticancer properties to combat bacterial infections and cancer disease more effectively than traditional antibiotics. This study investigates the synthesis of ZrO and chitosan (ch) coated zirconium oxide nanoparticles (chZrO NPs) using Bougainvillea glabra (B.

View Article and Find Full Text PDF

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!