Nucleic acid detection and quantification technologies have made remarkable progress in recent years. Among existing platforms, hybridization-based assays have the advantages of being amplification free, low instrument cost, and high throughput, but are generally less sensitive compared to sequencing and PCR assays. To bridge this performance gap, we developed a quantitative physical model for the hybridization-based assay to guide the experimental design, which leads to a pico-liter droplet environment with drastically enhanced performance and detection limit several order above any current microarray platform. The pico-liter droplet hybridization platform is further coupled with the on-chip enrichment technique to yield ultrahigh sensitivity both in terms of target concentration and copy number. Our physical model, taking into account of molecular transport, electrostatic intermolecular interactions, reaction kinetics, suggests that reducing liquid height and optimizing target concentration will maximize the hybridization efficiency, and both conditions can be satisfied in a highly parallel, self-assembled pico-liter droplet microarray that produces a detection limit as low as 570 copies and 50 aM. The pico-liter droplet array device is realized with a micropatterned superhydrophobic black silicon surface that allows enrichment of nucleic acid samples by position-defined evaporation. With on-chip enrichment and oil encapsulated pico-liter droplet arrays, we have demonstrated a record high sensitivity, wide dynamic range (6 orders of magnitude), and marked reduction of hybridization time from >10 h to <5 min in a highly repeatable fashion, benefiting from the physics-driven design and nanofeatures of the device. The design principle and technology can contribute to biomedical sensing and point-of-care clinical applications such as pathogen detection and cancer diagnosis and prognosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.5b03848 | DOI Listing |
N Biotechnol
July 2024
Department of Electrical and Computer Engineering, USA; Department of Biomedical Engineering, USA; Department of Chemical Engineering, Texas A&M University, College Station, TX, USA. Electronic address:
A significant hurdle for the widespread implementation and use of synthetic biology is the challenge of highly efficient introduction of DNA into microorganisms. This is especially a barrier for the utilization of non-model organisms and/or novel chassis species for a variety of applications, ranging from molecular biology to biotechnology and biomanufacturing applications. Common approaches to episomal and chromosomal gene editing, which employ techniques such as chemical competence and electroporation, are typically only amenable to a small subset of microbial species while leaving the vast majority of microorganisms in nature genetically inaccessible.
View Article and Find Full Text PDFInt J Biol Macromol
January 2023
College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University, Qingdao 266071, China.
In this study, a simple and effective coating method to improve printing quality and material utilization rate was proposed. The flow behavior of pico-liter scale ink droplets on the silk fabric surfaces which treated separately with Sodium alginate (SA), Hydroxyethyl cellulose (HEC) and Hydroxyethyl methyl cellulose (HEMC) was observed and measured. Indeed, based on the direct empirical results, the optimal pretreatment process on the fabrics, aiming to increase the ink utilization rate and further improve the surface printing clarity, has been obtained in the experiments.
View Article and Find Full Text PDFRSC Adv
June 2022
School of Materials Science and Engineering, Nanotechnology Research Center, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University Guangzhou 510275 China
Microreactor technology has attracted tremendous interest due to its features of a large specific surface area, low consumption of reagents and energy, and flexible control of the reaction process. As most of the current microreactors have volumes of microliters or even larger, effective methods to reduce the microreactors' sizes and improve their flexibility and controllability have become highly demanded. Here we propose an optical method of coalescence and splitting of femto-/pico-liter droplets for application in microreactors.
View Article and Find Full Text PDFLangmuir
April 2021
Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom.
This paper presents a systematic study of the wetting and drying of aqueous pico-liter droplets containing nonionic surfactants polyoxyethylene alkyl ethers (CE; = 10, 12, 14, = 6 or 8) in comparison with the anionic surfactant sodium dodecyl sulfate (SDS). The spreading and drying of droplets on hydrophilic substrates were studied by tracking the three-phase contact line (TCL) and by interferometry. CE droplets undergo phase separation during drying: a water-rich droplet retracts and leaves behind a thin film that is postulated to be a surfactant mesophase.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
June 2021
Acoustic droplet ejection (ADE) uses the acoustic energy produced by a focused ultrasound beam to provide a noncontact, highly precise, automatic, and cost-effective liquid transfer method for life science applications. The reported minimum precision of the current acoustic liquid transfer technology is 1 nL. Since precision improvement always brings valuable results in biological research, it is highly necessary to develop pico-liter precision liquid transfer technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!