To investigate the role of polysaccharide from Acanthopanax senticosus (ASPS) on lipopolysaccharide (LPS)-induced intestinal injury, mice in three treatments were administrated orally with or without ASPS (300 mg/kg body weight) for 14 days, followed by challenge with LPS or saline. At 4 h post-injection, blood and intestinal samples of six mice / treatment were collected. The results showed ASPS ameliorated LPS-induced intestinal morphological deterioration, proven by improved villus height (P < 0.05) and villus height : crypt depth ratio (P < 0.05). ASPS also elevated the mucosal barrier of LPS-challenged mice, supported by reduced plasma diamine oxidase (DAO) activity (P < 0.05) and L-lactate (P < 0.05), increased mucosal DAO activity (P < 0.05) as well as enhanced intestinal tight junction proteins expression involving occludin-1 (P < 0.05) and zonula occludens-1 (P < 0.05). In addition, ASPS decreased LPS-induced secretion of inflammatory mediators, including tumor necrosis factor (TNF)-α (P < 0.05) and prostaglandin E2 (P < 0.05). Also, ASPS down-regulated messenger RNA expression of toll-like receptor 4 (TLR4) and its downstream signals, including myeloid differentiation factor 88 (P < 0.05), TNF-α receptor-associated factor 6 (P < 0.05), as well as nuclear factor (NF)-κB p65 (P < 0.05) and its protein expression. These findings suggest that ASPS improves intestinal integrity under inflammation conditions connected with inhibiting TLR4/NF-κB signaling pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1111/asj.12528DOI Listing

Publication Analysis

Top Keywords

005
12
acanthopanax senticosus
8
intestinal integrity
8
inhibiting tlr4/nf-κb
8
tlr4/nf-κb signaling
8
signaling pathways
8
lps-induced intestinal
8
005 asps
8
dao activity
8
activity 005
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!