Background: Geocoris punctipes (Hemiptera: Lygaeidae) and Eretmocerus eremicus (Hymenoptera: Aphelinidae) are whitefly natural enemies. Previously, under laboratory conditions, we showed that G. punctipes engages in intraguild predation (IGP), the attack of one natural enemy by another, on E. eremicus. However, it is unknown whether this IGP interaction takes place under more complex scenarios, such as semi-field conditions. Even more importantly, the effect of this interaction on the density of the prey population requires investigation. Therefore, the present study aimed to establish whether this IGP takes place under semi-field conditions and to determine whether the predation rate of G. punctipes on the whitefly decreases when IGP takes place.
Results: Molecular analysis showed that, under semi-field conditions, G. punctipes performed IGP on E. eremicus. However, although IGP did take place, the predation rate by G. punctipes on the whitefly was nevertheless higher when both natural enemies were present together than when the predator was present alone.
Conclusion: While IGP of G. punctipes on E. eremicus does occur under semi-field conditions, it does not adversely affect whitefly control. The concomitant use of these two natural enemies seems a valid option for inundative biological control programmes of T. vaporariorum in tomato. © 2015 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.4163 | DOI Listing |
Insects
December 2024
Environmental Health and Ecological Sciences Department, Ifakara Health Institute, Morogoro P.O. Box 53, Tanzania.
Interspecific competition between mosquito larvae may affects adult vectorial capacity, potentially reducing disease transmission. It also influences population dynamics, and cannibalistic and predatory behaviors. However, knowledge of interspecific competition between and species is limited.
View Article and Find Full Text PDFInsects
December 2024
Department of Zoology, Faculty of Science, Eastern University, Chenkalady 30350, Sri Lanka.
The melon fly, , poses a severe threat to the country's agricultural productivity, particularly in the cultivation of cucurbitaceous crops. This study was conducted to determine the ideal irradiation dose to be used to set up a Sterile Insect Technique (SIT)-based strategy to control outbreaks in Sri Lanka. A colony was established and maintained under standard laboratory conditions.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Electroceramics and Electrical Engineering, Malek Ashtar University of Technology, Iran.
As a primary abiotic constraint for bean cultivation in semi-arid regions, drought stress significantly impacts both the yield and quality of beans. Foliar application of nanofertilizer has been shown to effectively improve crop yield and nutritional quality while mitigating environmental pollution associated with fertilizer runoff. In this study, we conducted a semi-field study using magnetite nanoparticles (FeONPs) to evaluate its effects on the growth, yield, nutrient quality, photosynthetic parameters, and physiological traits in kidney bean (Phaseolus vulgaris L.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Plant Pathology and Weed Research, ARO-the Volcani Institute, Rishon LeZion, Israel.
Background: Fungal plant diseases cause major crop losses. Phytopathogenic fungi's ability to evolve resistance to fungicides, alongside ongoing prohibition of such agents by the European Commission because of their pronounced adverse effects on human health and the environment, make their control a challenge. Moreover, the development of less perilous fungicides is a complex task.
View Article and Find Full Text PDFMalar J
January 2025
Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
Background: Members of the Anopheles gambiae complex are major malaria vectors in sub-Saharan Africa. Their larval stages inhabit a variety of aquatic habitats in which, under natural circumstances, they are preyed upon by different taxa of aquatic macroinvertebrate predators. Understanding the potential impact of predators on malaria vector larval population dynamics is important for enabling integrated local mosquito control programmes with a stronger emphasis on biocontrol approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!