A series of palladium-based catalysts of metal alloying (Sn, Pb) and/or (N-doped) graphene support with regular enhanced electrocatalytic activity were investigated. The peak current density (118.05 mA cm(-2)) of PdSn/NG is higher than the sum current density (45.63 + 47.59 mA cm(-2)) of Pd/NG and PdSn/G. It reveals a synergistic electrocatalytic oxidation effect in PdSn/N-doped graphene Nanocomposite. Extend experiments show this multisource synergetic catalytic effect of metal alloying and N-doped graphene support in one catalyst on small organic molecule (methanol, ethanol and Ethylene glycol) oxidation is universal in PdM(M = Sn, Pb)/NG catalysts. Further, The high dispersion of small nanoparticles, the altered electron structure and Pd(0)/Pd(II) ratio of Pd in catalysts induced by strong coupled the metal alloying and N-doped graphene are responsible for the multisource synergistic catalytic effect in PdM(M = Sn, Pb) /NG catalysts. Finally, the catalytic durability and stability are also greatly improved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593028 | PMC |
http://dx.doi.org/10.1038/srep14173 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!