Objectives/hypothesis: Hemangiopericytomas (HPC) are tumors that arise from pericytes. Hemangiopericytomas of the head and neck are rare and occur both extracranially and intracranially. This study analyzes the demographic, clinicopathologic, treatment modalities, and survival characteristics of extracranial head and neck hemangiopericytomas (HN-HPC) and compares them to HPCs at other body sites (Other-HPC).

Methods: The Surveillance, Epidemiology, and End Results (SEER) database (1973-2012) was queried for HN-HPC (121 cases) and Other-HPC (510 cases). Data were analyzed comparatively with respect to various demographic and clinicopathologic factors. Disease-specific survival (DSS) was analyzed using the Kaplan-Meier model.

Results: There was no significant difference in age at time of diagnosis between HN-HPC and Other-HPC. Head and neck HPC was most commonly located in the connective and soft tissue (18.4%), followed by the nasal cavity and paranasal sinuses (8.5%). Head and neck HPCs were smaller than Other-HPC (P < 0.0001) and more likely to be a lower histologic grade (P < 0.0097). The primary treatment modality for HN-HPC was surgery alone, used in 55.8% of cases. The 5-, 10-, and 20-year DSS for HN-HPC were 84.0%, 79.4%, and 69.4%, respectfully. Higher histologic grade and the presence of distant metastases were poor prognostic factors for HN-HPC.

Conclusion: Head and neck HPCs are rare tumors. This study represents the largest series of HN-HPCs to date. Surgery alone is the primary treatment modality for HN-HPC, with a favorable prognosis. Adjuvant radiotherapy does not appear to confer a survival benefit for any body site.

Level Of Evidence: 4. Laryngoscope, 126:643-650, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/lary.25681DOI Listing

Publication Analysis

Top Keywords

head neck
20
demographic clinicopathologic
8
head
5
neck
5
population-based analysis
4
analysis head
4
neck hemangiopericytoma
4
hemangiopericytoma objectives/hypothesis
4
objectives/hypothesis hemangiopericytomas
4
hemangiopericytomas hpc
4

Similar Publications

Background: Intratumor-resident bacteria represent an integral component of the tumor microenvironment (TME). Microbial dysbiosis, which refers to an imbalance in the bacterial composition and bacterial metabolic activities, plays an important role in regulating breast cancer development and progression. However, the impact of specific intratumor-resident bacteria on tumor progression and their underlying mechanisms remain elusive.

View Article and Find Full Text PDF

Aim: The study was designed to evaluate molecular alterations, relevant to the prognosis and personalized therapy of salivary gland cancers (SGCs).

Materials And Methods: DNA was extracted from archival tissue of 40 patients with various SGCs subtypes. A targeted next-generation sequencing (NGS) panel was used for the identification of small-scale mutations, focal and chromosomal arm-level copy number changes.

View Article and Find Full Text PDF

Medical large language models are vulnerable to data-poisoning attacks.

Nat Med

January 2025

Department of Neurosurgery, NYU Langone Health, New York, NY, USA.

The adoption of large language models (LLMs) in healthcare demands a careful analysis of their potential to spread false medical knowledge. Because LLMs ingest massive volumes of data from the open Internet during training, they are potentially exposed to unverified medical knowledge that may include deliberately planted misinformation. Here, we perform a threat assessment that simulates a data-poisoning attack against The Pile, a popular dataset used for LLM development.

View Article and Find Full Text PDF

This study addresses the limited noninvasive tools for Head and Neck Squamous Cell Carcinoma (HNSCC) progression-free survival (PFS) prediction by identifying Computed Tomography (CT)-based biomarkers for predicting prognosis. A retrospective analysis was conducted on data from 203 HNSCC patients. An ensemble feature selection involving correlation analysis, univariate survival analysis, best-subset selection, and the LASSO-Cox algorithm was used to select functional features, which were then used to build final Cox Proportional Hazards models (CPH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!