Background And Purpose: To investigate the association between the rs11136000 single nucleotide polymorphism (SNP) of the clusterin (CLU) gene, the rs541458 and rs3851179 SNPs of the phosphatidylinositol-binding clathrin assembly protein (PICALM) gene and Alzheimer's disease (AD) in a Turkish population, and to determine whether there are any relationships between the CLU and the PICALM genotypes and behavioral and psychological symptoms of dementia (BPSD) in the Turkish population.
Methods: One-hundred and twelve AD patients and 106 controls were included in this study. BPSD were evaluated by the Behavioral Pathology in Alzheimer's Disease Rating Scale (BEHAVE-AD). SNPs in the CLU and the PICALM gene were genotyped by Real-Time PCR. Genotype distributions were assessed for the groups of patients and controls, for the patient groups with and without each BPSD, and "No BPSD" and "BPSD".
Results: The CLU and the PICALM genotypes were similar in the AD and control subjects, and the groups with and without each BPSD. There were also no significant differences between the "No BPSD" and the "BPSD" groups for the PICALM genotypes, but even without a statistical significance, it is notable that none of the "No BPSD" patients had genotype pattern CLU-rs11136000-TT, and the female subjects with genotype pattern CLU-rs11136000-TT had higher mean score of BEHAVE-AD.
Conclusion: This study claims that investigated SNPs are not genetic risk factors for AD in a Turkish population. In addition, the rs541458 and rs3851179 of PICALM SNPs are not related to development of BPSD, but the rs11136000 of CLU SNP might be related to development of BPSD in AD female Turkish subpopulation.
Download full-text PDF |
Source |
---|
Curr Gene Ther
January 2025
Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
Dementia is a comprehensive term that refers to illnesses characterized by a decline in cognitive memory and other cognitive functions, affecting a person's overall ability to operate. The exact causes of dementia are unknown to this day. The heterogeneity of Alzheimer's indicates the contribution of genetic polymorphism to this disease.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam 13120, Republic of Korea.
Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various genetic factors. In addition to the well-established amyloid precursor protein (), Presenilin-1 (), Presenilin-2 (), and apolipoprotein E (), several other genes such as Sortilin-related receptor 1 (), Phospholipid-transporting ATPase ABCA7 (), Triggering Receptor Expressed on Myeloid Cells 2 (), Phosphatidylinositol-binding clathrin assembly protein (), and clusterin () were implicated. These genes contribute to neurodegeneration through both gain-of-function and loss-of-function mechanisms.
View Article and Find Full Text PDFPeerJ
May 2024
School of Allied Health Sciences, College of Graduate Studies, Walailak University, Nakhon Si Thammarat, Thailand.
Background: Alzheimer's disease (AD) is one of the multifaceted neurodegenerative diseases influenced by many genetic and epigenetic factors. Genetic factors are merely not responsible for developing AD in the whole population. The studies of genetic variants can provide significant insights into the molecular basis of Alzheimer's disease.
View Article and Find Full Text PDFVavilovskii Zhurnal Genet Selektsii
April 2024
Bashkir State Medical University, Ufa, Russia Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia.
Alzheimer's disease affects an average of 5 % of the population with a significant increase in prevalence with age, suggesting that the same mechanisms that underlie aging may influence this pathology. Investigation of these mechanisms is promising for effective methods of treatment and prevention of the disease. Possible participants in these mechanisms are transposons, which serve as drivers of epigenetic regulation, since they form species-specific distributions of non-coding RNA genes in genomes in evolution.
View Article and Find Full Text PDFPLoS One
January 2024
School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Objectives: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive decline in cognitive and behavioral function. Studies have shown that genetic factors are one of the main causes of AD risk. genome-wide association study (GWAS), as a novel and effective tool for studying the genetic risk of diseases, has attracted attention from researchers in recent years and a large number of studies have been conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!