The aim of this work was to evaluate in vitro the genotoxic and/or antigenotoxic effects of resveratrol (RESV) and pterostilbene (PTER) on HepG2 cells. Moreover, additional tests were performed to evaluate early and late apoptosis events induced by the tested stilbenes. RESV and PTER did not show any genotoxic activity. As regards antigenotoxicity testing, RESV and PTER showed a typical, U-shaped hormetic dose-response relationship characterized by a biphasic trend with small quantities having opposite effects to large ones. HepG2 cells treated with PTER exhibited a marked increase in early apoptosis (40.1%) at 250 microM; whereas, the highest concentration tested for both RESV and PTER significantly increased the proportion of HepG2 cells undergoing late apoptosis (32.5 and 51.2%, respectively). The observed pro-apoptotic activity could, at least in part, explain the hormetic response observed when the compounds were tested for antigenotoxicity (i.e., in the presence of induced DNA damage).
Download full-text PDF |
Source |
---|
Cytotechnology
February 2025
Department of Microbiology, Dr. Ikram-Ul-Haq Institute of Industrial Biotechnology (IIIB), Government College University, Lahore, 54000 Pakistan.
Homeostasis of tissues requires a complex balance between cell proliferation and cell death. The disruption of this balance leads to tumors. Cancer is a mortal disease that spreads all over the body, it is an irregular cell growth.
View Article and Find Full Text PDFThe cellular stress response (CSR) is a conserved mechanism that protects cells from environmental and physiological stressors. The heat shock response (HSR), a critical component of the CSR, utilizes molecular chaperones to mitigate proteotoxic stress caused by elevated temperatures. We hypothesized that while the canonical HSR pathways are conserved across cell types, specific cell lines may exhibit unique transcriptional responses to heat shock.
View Article and Find Full Text PDFUnlabelled: Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Chemistry, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
The search for effective anti-cancer therapies has led to the exploration of dual inhibition strategies targeting multiple key molecular pathways. In this study, we aimed to design a novel candidate capable of dual inhibition targeting both EGFR (Epidermal Growth Factor Receptor) and PARP-1 (poly(ADP-ribose)polymerase-1), two crucial proteins implicated in cancer progression and resistance mechanisms. Through molecular hybridization and structure-based drug design approaches, we synthesized a series of compounds based on spirooxindole with triazole scaffolds with the potential for dual EGFR and PARP-1 inhibition.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Benha University, Benha, Egypt.
Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.
Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!