Nutrients derived from hydrothermal gasification of Acutodesmus obliquus were tested on its biological compatibility to support growth of the same microalgae. Photosynthetic parameters of photosystems I and II (PS I and PS II) were investigated to study physiological effects on the microalgal cell. The nutrients were collected as liquid residues. Dilutions of 1:500 showed no effect on both photosystems. Lower dilutions affected PS II initially and later also PS I. Cyclic electron flow around PS I compensated for loss of electrons due to partially inhibited PS II. The highest tested concentration of liquid residue erased any photosynthetic activity of PS II after 28 min and onwards. In contrast, PS I remained active. The results suggest that PS I is less susceptible than PS II and that the mixture of chemicals in the liquid residue did not directly affect PS I but PS II. The toxicants in the residues seemed to interfere with linear electron flow of PS II even though light-driven formation of radicals and subsequent damage to one of the photosystems can be excluded as demonstrated in darkness. Lowered photosynthetic activity of PS I during actinic irradiation was caused due to lack of supply of electrons from PS II. The cyclic electron flow might play a key role in delivering the energy needed to restore PS II activity and to biodegrade the toxicants when linear electron flow failed. These negative effects of liquid residue towards microalgal cells require a remediation step for direct application of the liquid residue to substitute commercial fertilizers in microalgal mass cultures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-015-7008-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!