Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was carried out to explore the adaptive mechanisms of Salmonella enterica serovar Typhimurium, in particular the implication of fatty acids (FA) in the remodeling of membrane lipid composition to overcome the combined effects of long-term starvation and γ-irradiation stresses. In addition, cell surface hydrophobicity was also evaluated. The bacterial strains (control and starved) were treated with a nonlethal γ-irradiation dose of 0.5 kGy and sublethal doses of 1 kGy. Gas chromatography analysis showed that the FA composition of starved and γ-irradiated cells was modified. However starvation combined with γ-irradiation induced more modifications in the FA composition than γ-irradiation or starvation alone. Indeed, the unsaturated FA-to-saturated FA ratio decreased significantly for both strains compared with γ-irradiated cells, as main consequence of the cyclic FA formation. Our results showed that starvation, irradiation, or combined stresses significantly influenced the hydrophobicity, and this may have affected the virulence state of Salmonella Typhimurium cells. This study represents one of the few to demonstrate the modifications on bacterial membrane as a cellular response to survive to the ionizing radiation combined with long-term starvation stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2015-9984 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!