This study was carried out to explore the adaptive mechanisms of Salmonella enterica serovar Typhimurium, in particular the implication of fatty acids (FA) in the remodeling of membrane lipid composition to overcome the combined effects of long-term starvation and γ-irradiation stresses. In addition, cell surface hydrophobicity was also evaluated. The bacterial strains (control and starved) were treated with a nonlethal γ-irradiation dose of 0.5 kGy and sublethal doses of 1 kGy. Gas chromatography analysis showed that the FA composition of starved and γ-irradiated cells was modified. However starvation combined with γ-irradiation induced more modifications in the FA composition than γ-irradiation or starvation alone. Indeed, the unsaturated FA-to-saturated FA ratio decreased significantly for both strains compared with γ-irradiated cells, as main consequence of the cyclic FA formation. Our results showed that starvation, irradiation, or combined stresses significantly influenced the hydrophobicity, and this may have affected the virulence state of Salmonella Typhimurium cells. This study represents one of the few to demonstrate the modifications on bacterial membrane as a cellular response to survive to the ionizing radiation combined with long-term starvation stress.

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2015-9984DOI Listing

Publication Analysis

Top Keywords

long-term starvation
12
combined long-term
8
starvation γ-irradiation
8
fatty acids
8
cell surface
8
surface hydrophobicity
8
salmonella enterica
8
enterica serovar
8
serovar typhimurium
8
γ-irradiated cells
8

Similar Publications

Analyses of translation factors Dbp1 and Ded1 reveal the cellular response to heat stress to be separable from stress granule formation.

Cell Rep

December 2024

Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Electronic address:

Ded1 and Dbp1 are paralogous conserved DEAD-box ATPases involved in translation initiation in yeast. In long-term starvation states, Dbp1 expression increases and Ded1 decreases, whereas in cycling mitotic cells, Dbp1 is absent. Inserting DBP1 in place of DED1 cannot replace Ded1 function in supporting mitotic translation, partly due to inefficient translation of the DBP1 coding region.

View Article and Find Full Text PDF

Leveraging Transcriptional Signatures of Diverse Stressors for Bumble Bee Conservation.

Mol Ecol

December 2024

Penn State University, Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, University Park, Pennsylvania, USA.

Organisms in nature are subjected to a variety of stressors, often simultaneously. Foremost among stressors of key pollinators are pathogens, poor nutrition and climate change. Landscape transcriptomics can be used to decipher the relative role of stressors, provided there are unique signatures of stress that can be reliably detected in field specimens.

View Article and Find Full Text PDF

Development of a self-assembled dual-enzyme co-display platform on the surface of the natural "chitosan beads" of yeast spores.

Int J Biol Macromol

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Under starvation conditions, Saccharomyces cerevisiae diploid cells initiate meiosis to produce dormant cells called spores. When the DIT1 gene involved in assembling the outermost layer dityrosine is disrupted, the natural "chitosan beads" of yeast spores will be formed. A novel cell surface display system based on "chitosan beads" of dit1Δ yeast spores was previously established.

View Article and Find Full Text PDF

Bacterial lifespan ranges from a few hours to geological timescales. The prolonged survival trait under extreme energy starvation is essential for the perpetuation of their existence. The theme for long-term survival [long-term stationary phase (LTSP)] in the non-growing state may be dependent on the diversity in the environmental niche and the lifestyle of the bacteria, exemplified by longevity studies, albeit few, with model organisms.

View Article and Find Full Text PDF
Article Synopsis
  • * Historical famines, particularly the Dutch Hunger Winter and the Great Chinese Famine, provide critical insights into the impacts of prenatal starvation on health across generations.
  • * There is some disagreement among studies about the specific risks and timing of starvation during pregnancy, and gender differences further complicate the understanding of these effects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!