In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2015.09.025 | DOI Listing |
Front Chem
December 2024
School of the Environment and Safety Engineering (School of the Emergency Management), Jiangsu University, Zhenjiang, China.
In this paper, we report a novel method for enhancing the flame retardancy of wood-based paper by utilizing natural biomaterials. The research constructed a bilayered structure coating on paper fiber surfaces, incorporating mixed starch (MS), adenosine triphosphate (ATP), and phytic acid (PA) as natural bio-based flame retardants. The structural configuration of the coating comprises MS/ATP and MS/PA, which were sequentially assembled as bottom and top parts, respectively, through pneumatic spraying.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Saxon State Office for Environment, Agriculture and Geology, Halsbrückerstr. 31a, Freiberg 09599, Germany.
Historical mining towns face financial challenges with the proposed Soil Monitoring Law of the European Union, which will require the management of soil contamination, since remediating soil in densely populated towns and cities is challenging. We compared the environmental impact of sulfide ore mining in the urban area of Outokumpu in Finland with that of other European sites, focusing on soil contamination. Soil sampling revealed that mine tailings were historically used in road construction.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, PR China.
Rapeseed meal (RSM), a protein-rich byproduct, holds potential as a high-quality animal feed, but nitrile compounds derived from glucosinolates (GSLs) in RSM pose a toxicity risk. Nitrilases, enzymes that hydrolyze toxic nitriles to carboxylic acids, offer a potential solution for detoxification. However, the low thermal stability of nitrilases restricts their industrial applicability.
View Article and Find Full Text PDFCommun Earth Environ
December 2024
University of Waterloo, Waterloo, ON Canada.
Characterizing deep subsurface microbial communities informs our understanding of Earth's biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the family, Frackibacter.
View Article and Find Full Text PDFLangmuir
December 2024
School of Mechanical and Mining Engineering, University of Queensland, Brisbane 4072, Australia.
Coalbed methane (CBM) reservoir modification based on chemical solvent treatment could change the coal microstructure, which further affects the adsorption capacity and flow characteristics of this clean energy. Coal samples were extracted by tetrahydrofuran (THF), carbon disulfide (CS), and hydrochloric acid (HCl). Low-pressure nitrogen adsorption, carbon dioxide adsorption, Fourier transform infrared spectroscopy, and methane isothermal adsorption test were adopted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!