This paper reports input fluxes between ~1950 and present, of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and hexabromocyclododecanes (HBCDs) in radiometrically-dated sediment cores from 7 English lakes. Fluxes of PCBs at all but one location prone to significant sediment resuspension peaked in the late-1960s/early-1990s, before declining thereafter. Input fluxes of HBCDs at all sites increased from first emergence in the mid-1960s. Thereafter, fluxes peaked in the late-1980s/early-2000s, before declining through to the present, except at the most urban site where HBCD fluxes are still increasing. Trends of PBDEs predominant in the Penta-BDE and Octa-BDE formulations vary between sites. While at some locations, fluxes peaked in the late-1990s/early-2000s; at others, fluxes are still increasing. This suggests the full impact of EU restrictions on these formulations has yet to be felt. Fluxes of BDE-209 have yet to peak at all except one location, suggesting little discernible environmental response to recent EU restrictions on the Deca-BDE product. Strikingly, fluxes of BDE-209 in the most recent core slices either exceed or approach peak fluxes of ΣPCBs, implying substantial UK use of Deca-BDE. Excepting HBCDs, inventories of our target contaminants correlated significantly with local population density, implying substantial urban sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2015.09.102 | DOI Listing |
Membranes (Basel)
December 2024
Department of Mechanical Engineering, Mount Vernon Nazarene University, 800 Martinsburg Rd, Mt Vernon, OH 43050, USA.
The development of affordable ceramic membranes is essential for reducing expenses and optimizing the treatment of oily wastewater. There is an urgent demand for membranes that are not only affordable and easy to operate but also stable and capable of managing high fluxes to address the increasing volumes of oily wastewater. The significant production demands associated with many commercially available ceramic membranes, primarily due to the use of specialised raw materials and intricate processing methods, limiting their suitability for many wastewater treatment applications.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Successive crop harvest results in soil silicon (Si) loss, which constantly reduces soil available Si. Agricultural measures that can increase the availability of soil Si are in urgent need in agroecosystems. Enhanced weathering of silicate minerals can effectively replenish soil Si, which will promote plant uptake of Si, formation of plant phytolith occluded carbon (PhytOC), and the sequestration of atmospheric CO.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
Methane (CH) processes and fluxes have been widely investigated in low-latitude tropical wetlands and high-latitude boreal peatlands. In the mid-latitude Mongolia Plateau, however, CH processes and fluxes have been less studied, particularly in riverine wetlands. In this study, in situ experiments were conducted in the riverine sandy wetlands of the Mongolia Plateau to gain a better understanding of CH emissions and their influencing mechanisms.
View Article and Find Full Text PDFJ Struct Biol
December 2024
Advanced Research Institute, Institute of Science Tokyo, 1-5-45 Yushima Bunkyo-ku 113-8510, Tokyo, Japan. Electronic address:
Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophospholipids derived from cell membranes that activate the endothelial differentiation gene family of G protein-coupled receptors. Activation of these receptors triggers multiple downstream signaling cascades through G proteins such as Gi/o, Gq/11, and G12/13. Therefore, LPA and S1P mediate several physiological processes, including cytoskeletal dynamics, neurite retraction, cell migration, cell proliferation, and intracellular ion fluxes.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Key Laboratory of Global Change and Marine Atmospheric Chemistry, MNR, Xiamen 361001, China.
Accurately assessing the dry deposition fluxes of inorganic nitrogen aerosol (aerosol-IN) is crucial for mitigating the ecological damage caused by excessive nitrogen in oceanic equilibria. We developed a dry deposition model to assess the dry deposition fluxes of aerosol-IN into Chinese offshore areas over a decade, with the range of 2.81 × 10-1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!