The suitability of crude and purified struvite (MgNH4PO4), a major precipitate in wastewater streams, was investigated for renewable replacement of conventional nitrogen and phosphate resources for cultivation of microalgae. Bovine effluent wastewater stone, the source of crude struvite, was characterized for soluble N/P, trace metals, and biochemical components and compared to the purified mineral. Cultivation trials using struvite as a major nutrient source were conducted using two microalgae production strains, Nannochloropsis salina and Phaeodactylum tricornutum, in both lab and outdoor pilot-scale raceways in a variety of seasonal conditions. Both crude and purified struvite-based media were found to result in biomass productivities at least as high as established media formulations (maximum outdoor co-culture yield ∼20±4gAFDW/m(2)/day). Analysis of nutrient uptake by the alga suggest that struvite provides increased nutrient utilization efficiency, and that crude struvite satisfies the trace metals requirement and results in increased pigment productivity for both microalgae strains.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.09.070DOI Listing

Publication Analysis

Top Keywords

nannochloropsis salina
8
salina phaeodactylum
8
phaeodactylum tricornutum
8
nutrient source
8
crude purified
8
crude struvite
8
trace metals
8
struvite
6
growth mono-
4
mono- mixed
4

Similar Publications

Super hydrophilic and super oleophobic carbon nanotube/TiO composite membranes for efficient separation of algal-derived oil/water emulsions.

Colloids Surf B Biointerfaces

April 2025

Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.

The separation of oil from microalgae aqueous emulsions is a critical step in producing algal-derived biofuels and nutraceuticals. This study presents the development of super hydrophilic and super oleophobic composite membranes to efficiently separate algal oil from oil/water emulsions. Carbon nanotubes (CNTs) were functionalized with polydopamine (PDA), polyethylene glycol (PEG), and titanium dioxide (TiO) nanoparticles and coated onto a mixed cellulose ester (MCE) substrate to fabricate the composite membranes.

View Article and Find Full Text PDF

The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as spp. and are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in and spp.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores alternatives to fetal bovine serum (FBS) in cell culture, focusing on serum-free media (SFM) to enhance viral vaccine production.
  • Five marine microalgal extracts, particularly from species DS and SP, are shown to significantly boost the proliferation rates of MDCK and Vero cells.
  • The findings suggest that these extracts not only promote cell growth but also enhance antioxidant activity, reducing oxidative stress, making them a promising substitute for FBS in cell culture applications.
View Article and Find Full Text PDF

Effects of Fermented Oil on Proliferation of Human Dermal Papilla Cells and Hair Growth.

Int J Mol Sci

July 2024

Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.

The hair follicle is the basis of hair regeneration, and the dermal papilla is one of the most important structures in hair regeneration. New intervention and reversal strategies for hair loss may arise due to the prevention of oxidative stress. GC/MS analysis was used to determine the compounds contained in NSO.

View Article and Find Full Text PDF

Microalgae, recognized as sustainable and eco-friendly photosynthetic microorganisms, play a pivotal role in converting CO into value-added products. Among these, Nannochloropsis salina (Microchloropsis salina) stands out, particularly for its ability to produce eicosapentaenoic acid (EPA), a crucial omega-3 fatty acid with significant health benefits such as anti-inflammatory properties and cardiovascular health promotion. This study focused on optimizing the cultivation conditions of Nannochloropsis salina to maximize EPA production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!