The chemical properties and microbial community characterization of the thermophilic microaerobic pretreatment process.

Bioresour Technol

Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China. Electronic address:

Published: December 2015

Thermophilic microaerobic pretreatment (TMP) was recently reported as an efficient pretreatment method of anaerobic digestion (AD). In this study, the chemical properties and microbial community were characterized to reveal how TMP working. Compared with thermophilic treatment under anaerobic condition (TMP0), cellulase activity obviously improved under microaerobic condition (TMP1), which was 10.9-49.0% higher than that of TMP0. Reducing sugar, SCOD and VFAs concentrations of TMP1 were 2.6-8.9%, 1.8-4.8% and 13.8-24% higher than those of TMP0, respectively. TMP gave obvious rise to phylum Firmicutes, which associated with extracellular enzymes production. The proportion of class Bacilli (belongs to phylum Firmicutes and mainly acts during hydrolysis) in TMP1 was 124.89% higher than that of TMP0, which reflected the greater hydrolytic ability under microaerobic condition. The improved abundance of phylum Firmicutes (especially class Bacilli, order Bacillales) under microaerobic condition could be the fundamental reason for the improved AD performance of thermophilic microaerobic pretreated corn straw.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.09.029DOI Listing

Publication Analysis

Top Keywords

thermophilic microaerobic
12
microaerobic condition
12
higher tmp0
12
phylum firmicutes
12
chemical properties
8
properties microbial
8
microbial community
8
microaerobic pretreatment
8
class bacilli
8
microaerobic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!