MicroRNAs (miRNAs) act as important post-transcriptional regulators of gene expression in diverse signalling pathways. However, the relationship between miR-200b and the nuclear factor-κB (NF-κB) signalling pathway remains poorly understood in breast cancer cells. In the current study, we show that IKBKB is a direct target of miR-200b, and that miR-200b downregulates IKBKB expression via directly binding to its 3'-UTR. miR-200b inhibits IκBα phosphorylation, nuclear p50/p65 expression, NF-κB-binding activity, and the translocation of p65 to the nucleus. In addition, miR-200b also suppresses tumour necrosis factor (TNF)-α-induced NF-κB activation and the expression of NF-κB target genes. Importantly, IKBKB overexpression attenuates the inhibitory roles of miR-200b in NF-κB expression, NF-κB-binding activity, and the nuclear translocation of p65. We also show that NF-κB p65 knockdown reduces the binding of NF-κB to the miR-200b promoter and miR-200b promoter activity. Furthermore, p65 knockdown or inhibition of IκBα phosphorylation suppresses miR-200b expression. Finally, functional studies show that IKBKB overexpression can restore the cell growth and migration that are suppressed by miR-200b. In conclusion, our results demonstrate that miR-200b, a transcriptional target of NF-κB, suppresses breast cancer cell growth and migration, and NF-κB activation, through downregulation of IKBKB, indicating that miR-200b has potential as a therapeutic target in breast cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.13543DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
mir-200b
13
mir-200b nuclear
8
nuclear factor-κb
8
cancer cells
8
nf-κb
8
iκbα phosphorylation
8
expression nf-κb-binding
8
nf-κb-binding activity
8
translocation p65
8

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Sarcopenia as a Prognostic Factor and Multimodal Interventions in Breast Cancer.

Int J Gen Med

December 2024

Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.

Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!