Heme oxygenase-1, a novel target for the treatment of diabetic complications: focus on diabetic peripheral neuropathy.

Pharmacol Res

Molecular Neuropharmacology Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India. Electronic address:

Published: December 2015

Diabetic neuropathy is a complex disorder induced by long standing diabetes. Many signaling pathways and transcription factors have been proposed to be involved in the development and progression of related processes. Years of research points to critical role of oxidative stress, neuroinflammation and apoptosis in the pathogenesis of neuropathy in diabetes. Heme oxygenase-1 (HO-1) is heat-shock protein induced under conditions of different kinds of stress and has been implicated in cellular defense against oxidative stress. HO-1 degrades heme to biliverdin, carbon monoxide (CO) and free iron. Biliverdin and CO are gaining particular interest because these two have been found to mediate most of anti-inflammatory, antioxidant and anti-apoptotic effects of HO-1. Although extensively studied in different kinds of cancers and cardiovascular conditions, role of HO-1 in diabetic neuropathy is still under investigation. In this paper, we review the unique therapeutic potential of HO-1 and its role in mitigating various pathological processes that lead to diabetic neuropathy. This review also highlights the therapeutic approaches such as pharmacological and natural inducers of HO-1, gene delivery of HO-1 or its reaction products that in future, could lead to progression of HO-1 activators through the preclinical stages of drug development to clinical trials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2015.09.014DOI Listing

Publication Analysis

Top Keywords

diabetic neuropathy
12
heme oxygenase-1
8
oxidative stress
8
ho-1
8
diabetic
5
neuropathy
5
oxygenase-1 novel
4
novel target
4
target treatment
4
treatment diabetic
4

Similar Publications

Objective: To analyze the characteristics of pulmonary nodules (PNs) and related influencing factors in patients with type 2 diabetes mellitus (T2DM).

Methods: Retrospectively analyzed the clinical and biochemical characteristics of 224 patients with PNs and 488 patients with non-PNs in patients with T2DM, and compared the clinical data of 72 patients with large nodules (≥ 5 mm) and 152 patients with small nodules (< 5 mm) in the pulmonary nodules (PNs) group.

Results: Compared to the non-PNs group, the PNs Patients in the group had a longer duration of diabetes, higher age, serum creatinine (SCR), blood urea nitrogen (BUN) and the lower albumin (ALB) and body mass index (BMI); women, diabetic retinopathy (DR), diabetic peripheral neuropathy (DPN), and estimated glomerular filtration rate (eGFR) < 60 ml/min1.

View Article and Find Full Text PDF

Chronic wounds are complex conditions categorized into pressure injuries, diabetic foot ulcers, venous leg ulcers, and arterial ulcers. In managing these wounds, the selection of appropriate wound care products is of critical importance. Commonly used dressings include hydrocolloid, hydrogel, alginate, foam, and silver-containing dressings.

View Article and Find Full Text PDF

Background: Dyslipidemia is closely related to diabetic neuropathy. This study examined the potential causal relationship involving 179 lipid species and the disease.

Methods: The pooled data on 179 lipid species and diabetic neuropathy were obtained from previous genome-wide association studies (GWAS).

View Article and Find Full Text PDF

Intradermal Advanced Glycation End-products Relate to Reduced Sciatic Nerve Structural Integrity in Type 2 Diabetes.

Clin Neuroradiol

January 2025

Department of Endocrinology, Diabetology, Metabolic Diseases and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.

Background: Cardiovascular risk management is beneficial, but stringent glycemic control does not prevent the progression of distal sensorimotor polyneuropathy (DSPN). Persistent hyperglycemia-induced alterations and cardiovascular factors may contribute to diabetes-associated nerve damage. This study aimed to evaluate the correlation between skin auto-fluorescence (sAF), an indicator of dermal advanced glycation end-product (AGE) accumulations, cardiovascular risk, and changes in peripheral nerve integrity.

View Article and Find Full Text PDF

The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!