Dynamical features of the Plasmodium falciparum ribosome during translation.

Nucleic Acids Res

Department of Biological Sciences, Columbia University, New York, NY 10027, USA Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA

Published: December 2015

Plasmodium falciparum, the mosquito-transmitted Apicomplexan parasite, causes the most severe form of human malaria. In the asexual blood-stage, the parasite resides within erythrocytes where it proliferates, multiplies and finally spreads to new erythrocytes. Development of drugs targeting the ribosome, the site of protein synthesis, requires specific knowledge of its structure and work cycle, and, critically, the ways they differ from those in the human host. Here, we present five cryo-electron microscopy (cryo-EM) reconstructions of ribosomes purified from P. falciparum blood-stage schizonts at sub-nanometer resolution. Atomic models were built from these density maps by flexible fitting. Significantly, our study has taken advantage of new capabilities of cryo-EM, in visualizing several structures co-existing in the sample at once, at a resolution sufficient for building atomic models. We have discovered structural and dynamic features that differentiate the ribosomes of P. falciparum from those of mammalian system. Prompted by the absence of RACK1 on the ribosome in our and an earlier study we confirmed that RACK1 does not specifically co-purify with the 80S fraction in schizonts. More extensive studies, using cryo-EM methodology, of translation in the parasite will provide structural knowledge that may lead to development of novel anti-malarials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4666399PMC
http://dx.doi.org/10.1093/nar/gkv991DOI Listing

Publication Analysis

Top Keywords

plasmodium falciparum
8
atomic models
8
dynamical features
4
features plasmodium
4
falciparum
4
falciparum ribosome
4
ribosome translation
4
translation plasmodium
4
falciparum mosquito-transmitted
4
mosquito-transmitted apicomplexan
4

Similar Publications

Development of highly sensitive lateral flow immunoassay using PdNPs for detection of Plasmodium species.

Clin Chim Acta

January 2025

ARKRAY Healthcare Pvt. Ltd., Plot No. 336, 338, 340, Rd Number 3, GIDC, Sachin, 394230 Surat, Gujarat, India.

A lateral flow immunoassay (LFIA) employing palladium nanoparticles (PdNPs) labelled with antibodies has been innovatively designed for the precise detection of Plasmodium falciparum pLDH and HRPII antigen. This study focuses on development of LFIA based on PdNPs detection system to substantially enhance the visual detectability (vLOD), achieving an impressive 12 parasites/microliter (p/µl) vLOD in comparison with conventional system represented 50 p/µl vLOD. The research introduces a novel amplification system that not only heightens the sensitivity of LFIA but also maintains intense coloration.

View Article and Find Full Text PDF

Raf Kinase Inhibitor Protein (RKIP) is an important regulator of the MAPK signaling pathway in multicellular eukaryotes. Plasmodium falciparum RKIP (PfRKIP) is a putative phosphatidylethanolamine binding protein (PEBP) that shares limited similarity with Homo sapiens RKIP (HsRKIP). Interestingly, critical components of the MAPK pathway are not expressed in malaria parasites and the physiological function of PfRKIP remains unknown.

View Article and Find Full Text PDF

Haplotypes of Chloroquine Resistance Marker Genes Among Uncomplicated Malaria Cases in Lagos, Nigeria.

Biochem Genet

January 2025

Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, Chinese Center for Disease Control and Prevention, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Shanghai, 200025, People's Republic of China.

Drug resistance resulting from mutations in Plasmodium falciparum, that caused the failure of previously effective malaria drugs, has continued to threaten the global malaria elimination goal. This study describes the profiles of P. falciparum chloroquine resistance transporter (Pfcrt) and P.

View Article and Find Full Text PDF

[Plasma exchange combined with continuous renal replacement therapy for imported severe malaria: a case report].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

November 2024

Zigong Fourth People's Hospital, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan 643000, China.

The article presents the diagnosis and treatment of an imported case with severe malaria, and the effect of plasma exchange combined with continuous renal replacement therapy. Severe malaria is characterized by complex clinical symptoms and multiple complications, and plasma exchange combined with continuous renal replacement therapy has a satisfactory therapeutic efficacy for severe malaria.

View Article and Find Full Text PDF

Background: The Plasmodium proteasome emerges as a promising target for anti-malarial drug development due to its potential activity against multiple life cycle stages.

Methods: In this investigation, a comparative analysis was conducted on the structural features of the β5 subunit in the 20S proteasomes of both Plasmodium and humans.

Results: The findings underscore the structural diversity inherent in both proteasomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!