DYNLT1 is a member of a gene family identified within the t-complex of the mouse, which has been linked with male germ cell development and function in the mouse and the fly. Though defects in the expression of this gene are associated with male sterility in both these models, there has been no study examining its association with spermatogenic defects in human males. In this study, we evaluated the levels of DYNLT1 and its expression product in the germ cells of fertile human males and males suffering from spermatogenic defects. We screened fertile (n = 14), asthenozoospermic (n = 15), oligozoospermic (n = 20) and teratozoospermic (n = 23) males using PCR and Western blot analysis. Semiquantitative PCR indicated either undetectable or significantly lower levels of expression of DYNLT1 in the germ cells from several patients from across the three infertility syndrome groups, when compared with that of fertile controls. DYNLT1 was localized on head, mid-piece, and tail segments of spermatozoa from fertile males. Spermatozoa from infertile males presented either a total absence of DYNLT1 or its absence in the tail region. Majority of the infertile individuals showed negligible levels of localization of DYNLT1 on the spermatozoa. Overexpression of DYNLT1 in GC1-spg cell line resulted in the up-regulation of several cytoskeletal proteins and molecular chaperones involved in cell cycle regulation. Defective expression of DYNLT1 was associated with male factor infertility syndromes in our study population. Proteome level changes in GC1-spg cells overexpressing DYNLT1 were suggestive of its possible function in germ cell development. We have discussed the implications of these observations in the light of the known functions of DYNLT1, which included protein trafficking, membrane vesiculation, cell cycle regulation, and stem cell differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4762626PMC
http://dx.doi.org/10.1074/mcp.M115.050005DOI Listing

Publication Analysis

Top Keywords

dynlt1
11
dynlt1 associated
8
male factor
8
factor infertility
8
germ cell
8
cell development
8
associated male
8
spermatogenic defects
8
human males
8
germ cells
8

Similar Publications

Background: Metabolic dysfunction-associated steatohepatitis (MASH) is a highly prevalent liver disease globally, with a significant risk of progressing to cirrhosis and even liver cancer. Efferocytosis, a process implicated in a broad spectrum of chronic inflammatory disorders, has been reported to be associated with the pathogenesis of MASH; however, its precise role remains obscure. Thus, we aimed to identify and validate efferocytosis linked signatures for detection of MASH.

View Article and Find Full Text PDF

SNP-Based and Kmer-Based eQTL Analysis Using Transcriptome Data.

Animals (Basel)

October 2024

National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation Technology, Jiangxi Agricultural University, Nanchang 330045, China.

Traditional expression quantitative trait locus (eQTL) mapping associates single nucleotide polymorphisms (SNPs) with gene expression, where the SNPs are derived from large-scale whole-genome sequencing (WGS) data or transcriptome data. While WGS provides a high SNP density, it also incurs substantial sequencing costs. In contrast, RNA-seq data, which are more accessible and less expensive, can simultaneously yield gene expressions and SNPs.

View Article and Find Full Text PDF

(1) Background: An adult dog was presented to a board-certified veterinary neurologist for evaluation of chronic weakness, exercise intolerance and lactic acidemia. (2) Methods: A mitochondrial myopathy was diagnosed based on the histological and histochemical phenotype of numerous COX-negative muscle fibers. Whole-genome sequencing established the presence of multiple extended deletions in the mitochondrial DNA (mtDNA), with the highest prevalence between the 1-11 kb positions of the approximately 16 kb mitochondrial chromosome.

View Article and Find Full Text PDF

CXCR3 participates in asymmetric division of mouse oocytes by modulating actin dynamics.

Theriogenology

September 2024

College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China. Electronic address:

Extensive research has been conducted on the role of CXCR3 in immune responses and inflammation. However, the role of CXCR3 in the reproductive system, particularly in oocyte development, remains unknown. In this study, we present findings on the involvement of CXCR3 in the meiotic division process of mouse oocytes.

View Article and Find Full Text PDF

Teratozoospermia is a significant cause of male infertility, but the pathogenic mechanism of acephalic spermatozoa syndrome (ASS), one of the most severe teratozoospermia, remains elusive. We previously reported Spermatogenesis Associated 6 (SPATA6) as the component of the sperm head-tail coupling apparatus (HTCA) required for normal assembly of the sperm head-tail conjunction, but the underlying molecular mechanism has not been explored. Here, we find that the co-chaperone protein BAG5, expressed in step 9-16 spermatids, is essential for sperm HTCA assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!