Many previous event-related potential (ERP) studies have linked the feedback related negativity (FRN) component with medial frontal cortex processing and associated this component with depression. Few if any studies have investigated the processing of neutral feedback in mildly depressive subjects in the normal population. Two experiments compared brain responses to neutral feedback with behavioral performance in mildly depressed subjects who scored highly on the Beck Depression Inventory (high BDI) and a control group with lower BDI scores (low BDI). In the first study, the FRN component was recorded when neutral, negative or positive feedback was pseudo-randomly delivered to the two groups in a time estimation task. In the second study, real feedback was provided to the two groups in the same task in order to measure their actual accuracy of performance. The results of experiment one (Exp. 1) revealed that a larger FRN effect was elicited by neutral feedback than by negative feedback in the low BDI group, but no significant difference was found between neutral condition and negative condition in the High BDI group. The present findings demonstrated that depressive tendencies influence the processing of neutral feedback in medial frontal cortex. The FRN effect may work as a helpful index for investigating cognitive bias in depression in future studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bandc.2015.08.004 | DOI Listing |
J Cogn Neurosci
January 2025
Shahid Beheshti University, Tehran, Iran.
Risk-taking is a prominent aspect of adolescent behavior. A recent neurodevelopmental model suggests that this trait could influence prosocial and antisocial decision-making, proposing a new category known as prosocial and antisocial risk-taking. The primary objective of this study was to examine the electrophysiological underpinnings of prosocial and antisocial risk-taking in adolescence, a developmental period characterized by elevated risky, prosocial, and antisocial decisions.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA.
Canine-assisted interactions (CAIs) have been explored to offer therapeutic benefits to human participants in various contexts, from addressing cancer-related fatigue to treating post-traumatic stress disorder. Despite their widespread adoption, there are still unresolved questions regarding the outcomes for both humans and animals involved in these interactions. Previous attempts to address these questions have suffered from core methodological weaknesses, especially due to absence of tools for an efficient objective evaluation and lack of focus on the canine perspective.
View Article and Find Full Text PDFJMIR Serious Games
January 2025
Department of Medical and Rehabilitation Care, Angers University Hospital, Angers, France.
Background: Reminiscence therapy through music is a psychosocial intervention with benefits for older patients with neurocognitive disorders. Therapies using virtual or augmented reality are efficient in ecologically assessing, and eventually training, episodic memory in older populations. We designed a semi-immersive musical game called "A Life in Songs," which invites patients to immerse themselves in a past era through visuals and songs from that time period.
View Article and Find Full Text PDFSci Rep
December 2024
The Department of Mechanical Engineering and Mechatronics, Ariel University, Ariel, Israel.
Autism spectrum disorder (ASD) involves challenges in communication and social interaction, including challenges in recognizing emotions. Existing technological solutions aim to improve social behaviors in individuals with ASD by providing learning aids. This paper presents a real-time environmental translator designed to enhance social behaviors in individuals with ASD using sensory substitution.
View Article and Find Full Text PDFFront Neurosci
December 2024
Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States.
Objective: Targeted transcutaneous electrical nerve stimulation (tTENS) is a non-invasive neural stimulation technique that involves activating sensory nerve fibers to elicit tactile sensations in a distal, or referred, location. Though tTENS is a promising approach for delivering haptic feedback in virtual reality or for use by those with somatosensory deficits, it was not known how the perception of tTENS might be influenced by changing wrist position during sensorimotor tasks.
Approach: We worked with 12 able-bodied individuals and delivered tTENS by placing electrodes on the wrist, thus targeting the ulnar, median, and radial nerves, and eliciting tactile sensations in the hand.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!