Distinct biological activity of threonine monophosphorylated MAPK isoforms during the stress response in fission yeast.

Cell Signal

Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, 30071 Murcia, Spain. Electronic address:

Published: December 2015

Mitogen-activated protein kinases (MAPKs) define a specific group of eukaryotic protein kinases which regulate a number of cellular functions by transducing extracellular signals to intracellular responses. Unlike other protein kinases, catalytic activation of MAPKs by MAPKKs depends on dual phosphorylation at two tyrosine and threonine residues within the conserved TXY motif, and this has been proposed to occur in an ordered fashion, where the initial phosphorylation on tyrosine is followed by phosphorylation at the threonine residue. However, monophosphorylated MAPKs also exist in vivo, and although threonine phosphorylated isoforms retain some catalytic activity, their functional significance remains to be further elucidated. In the fission yeast Schizosaccharomyces pombe MAPKs Sty1 and Pmk1 control multiple aspects of fission yeast life cycle, including morphogenesis, cell cycle, and cellular response to a variety of stressful situations. In this work we show that a trapping mechanism increases MAPKK binding and tyrosine phosphorylation of both Sty1 and Pmk1 when subsequent phosphorylation at threonine is hampered, indicating that a sequential and likely processive mechanism might be responsible for MAPK activation in this simple organism. Whereas threonine-monophosphorylated Sty1 showed a limited biological activity particularly at the transcriptional level, threonine-monophosphorylated Pmk1 was able to execute most of the biological functions of the dually phosphorylated kinase. Thus, threonine monophosphorylated MAPKs might display distinct functional relevance among eukaryotes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cellsig.2015.09.017DOI Listing

Publication Analysis

Top Keywords

fission yeast
12
protein kinases
12
biological activity
8
threonine monophosphorylated
8
phosphorylation tyrosine
8
tyrosine phosphorylation
8
phosphorylation threonine
8
monophosphorylated mapks
8
sty1 pmk1
8
threonine
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!