Human mesenchymal stromal cells (hMSC) differentiating toward the chondrogenic lineage recapitulate successive phases of embryonic chondrocyte maturation developing from progenitor cells to hypertrophic chondrocytes. Osteoarthritic cartilage is characterized by an alteration in chondrocyte metabolism and upregulation of hypertrophic differentiation markers. A number of studies point toward a functional role for microRNAs (miRs) in controlling chondrocyte differentiation and development of osteoarthritis (OA). However, information on miRs that may regulate a specific phase of chondrocyte maturation, especially hypertrophy, is lacking. We here aimed to unravel miR profiles modulated during chondrogenesis of hMSC to obtain new differentiation markers and potential new targets relevant for differentiation outcome and OA development. hMSC were subjected to transforming growth factor-β (TGF-β)-driven chondrogenesis and miR profiles were determined by microarray analysis at distinct developmental time points. Expression of selected miRs was compared to cultures lacking chondrogenesis and to redifferentiated nonhypertrophic articular chondrocytes. Among 1349 probed miRs, 553 were expressed and 169 (31%) were significantly regulated during chondrogenesis. Hierarchical clustering identified specific miR expression patterns representative for MSC, prechondrocytes, chondroblasts, chondrocytes, and hypertrophic chondrocytes, respectively. Regulation of miR-181 family members allowed discrimination of successive differentiation stages. Levels of several miRs, including miR-23b, miR-140, miR-181, and miR-210 positively correlated with successful chondrocyte formation. Hypertrophic MSC-derived chondrocytes and nonhypertrophic articular chondrocytes showed differential expression of miR-181a, miR-210, and miR-31, but not miR-148a implicated in COL10A1-regulation. We conclude that the here identified stage-dependent miR clusters may have imperative functions during chondrocyte differentiation providing novel diagnostic tools and targets of potential relevance for OA development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2015.0352 | DOI Listing |
Cell Signal
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China. Electronic address:
Fractures are common and serious skeletal injuries, and accelerating their healing while alleviating patient suffering remains a clinical challenge. Annexin A2 (ANXA2) is a widely distributed, calcium-dependent, phospholipid-binding protein involved in bone remodeling. However, its role in chondrocyte differentiation and endochondral ossification remains unclear.
View Article and Find Full Text PDFDevelopment
January 2025
Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
Despite being a major target of reconstructive surgery, development of the ear pinna remains poorly studied. Here we provide a cellular characterization of late gestational and postnatal ear pinna development in two rodents and investigate the role of BMP5 in expansion and differentiation of auricular elastic cartilage. We find that ear pinna development is largely conserved between Mus musculus and the highly regenerative Acomys dimidiatus.
View Article and Find Full Text PDFBone Res
January 2025
Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.
Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).
View Article and Find Full Text PDFIntroduction: Mesenchymal stem cell (MSC)-based therapies have emerged as a promising approach for treating articular cartilage injuries. However, enhancing the chondrogenic differentiation potential of MSCs remains a significant challenge. KDM6B, a histone demethylase that specifically removes H3K27me3 marks, is essential in controlling the maturation of chondrocytes.
View Article and Find Full Text PDFPharmaceutics
December 2024
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy.
The treatment of articular cartilage damage has always represented a problem of considerable practical interest for orthopedics. Over the years, many surgical techniques have been proposed to induce the growth of repairing tissue and limit degeneration. In 1994, the turning point occurred: implanted autologous cells paved the way for a new treatment option based more on regeneration than repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!