Forecasting waste compositions: A case study on plastic waste of electronic display housings.

Waste Manag

KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, Box 2422, 3001 Leuven, Belgium.

Published: December 2015

Because of the rapid succession of technological developments, the architecture and material composition of many products used in daily life have drastically changed over the last decades. As a result, well-adjusted recycling technologies need to be developed and installed to cope with these evolutions. This is essential to guarantee continued access to materials and to reduce the ecological impact of our material consumption. However, limited information is currently available on the material composition of arising waste streams and even less on how these waste streams will evolve. Therefore, this paper presents a methodology to forecast trends in the material composition of waste streams. To demonstrate the applicability and value of the proposed methodology, it is applied to forecast the evolution of plastic housing waste from flat panel display (FPD) TVs, FPD monitors, cathode ray tube (CRT) TVs and CRT monitors. The results of the presented forecasts indicate that a wide variety of plastic types and additives, such as flame retardants, are found in housings of similar products. The presented case study demonstrates that the proposed methodology allows the identification of trends in the evolution of the material composition of waste streams. In addition, it is demonstrated that the recycling sector will need to adapt its processes to deal with the increasing complexity of plastics of end-of-life electronic displays while respecting relevant directives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2015.09.019DOI Listing

Publication Analysis

Top Keywords

material composition
16
waste streams
16
case study
8
composition waste
8
proposed methodology
8
waste
6
material
5
forecasting waste
4
waste compositions
4
compositions case
4

Similar Publications

Effect of Reaction Interface Structure on the Morphology and Performance of Thin-Film Composite Membrane.

Environ Sci Technol

January 2025

Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Ecology, Jiangnan University, Wuxi 214122, PR China.

Thin-film composite (TFC) membrane has been extensively utilized and investigated for its excellent properties. Herein, we have constructed an active layer (AL) containing cave-like structures utilizing large meniscus interface. Furthermore, the impact of interface structure on the growth process, morphology, and effective surface area of AL has been fully explored with the assistance of sodium dodecyl benzenesulfonate (SDBS).

View Article and Find Full Text PDF

Background/purpose: High gold (Au) alloys have many advantages, such as good mechanical properties and stable chemical properties for dental restoration. The purpose of this investigation was to investigate the effect of zirconia (ZrO)-magnesia (MgO)-based investment combined with an argon arc vacuum pressure (Ar-arc VP) casting process on the recasting of high Au alloys.

Materials And Methods: The recasting Au alloys were compared between the control group of conventional SiO-based investment/horizontal centrifugal (HC) casting and the experimental group of ZrO-MgO-based investment/Ar-arc VP die casting.

View Article and Find Full Text PDF

Background/purpose: Dysbiosis of oral microbiota has been reported in late stage of chronic hepatitis B (CHB) infection with cirrhosis. CHB is characterized by the constant virus-induced liver injury which may lead to liver cirrhosis and hepatocellular carcinoma (HCC). However, some patients show normal liver function without antiviral treatment, associating with favourable prognosis.

View Article and Find Full Text PDF

The World Health Organization (WHO) has added glass ionomer cement (GIC) to the WHO Model List of Essential Medicines since 2021, which represents the most efficacious, safe and cost-effective medicines for priority conditions. With the potential increase in the use of GIC, this review aims to provide an overview of the clinical application of GIC with updated evidence in restorative and preventive dentistry. GIC is a versatile dental material that has a wide range of clinical applications, particularly in restorative and preventive dentistry.

View Article and Find Full Text PDF

Preparation, characterization, and antibacterial application of cross-linked nanoparticles composite films.

Food Chem X

January 2025

Key Laboratory of Ministry of Agriculture for Germplasm Resources Conservation and Utilization of Cassava, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.

This study aimed to prepare a composite film by blending cross-linked tapioca starch (CLTS) with sodium alginate (SA), silver nanoparticles (AgNPs), and ZnO nanoparticles (ZnOs). The effects of SA, AgNPs, and ZnOs at different concentrations (1-3 wt%) on the mechanical properties, optical properties, thermal stability, and antibacterial activity of cross-linked starch films were also investigated. The structures of the films were examined by Fourier transform infrared spectroscopy and X-ray diffraction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!