Despite the fact that parasites are highly specialized with respect to their hosts, empirical evidence demonstrates that host switching rather than co-speciation is the dominant factor influencing the diversification of host-parasite associations. Ecological fitting in sloppy fitness space has been proposed as a mechanism allowing ecological specialists to host-switch readily. That proposal is tested herein using an individual-based model of host switching. The model considers a parasite species exposed to multiple host resources. Through time host range expansion can occur readily without the prior evolution of novel genetic capacities. It also produces non-linear variation in the size of the fitness space. The capacity for host colonization is strongly influenced by propagule pressure early in the process and by the size of the fitness space later. The simulations suggest that co-adaptation may be initiated by the temporary loss of less fit phenotypes. Further, parasites can persist for extended periods in sub-optimal hosts, and thus may colonize distantly related hosts by a "stepping-stone" process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592216 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0139225 | PLOS |
Sci Rep
January 2025
Laboratory of Nutrition and Physical Activity Research (LABINAF), Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
Cardiorespiratory fitness is the most important variable related to health and a strong predictor of mortality. However, it is rarely used in clinics due to costs, specialized equipment, space needs, and the requirements of expert staff such as an exercise physiologist, physician, or other health professional. This work aims to validate and test the reliability of a submaximal step test to estimate VOmax of 8-to 16-year-old pediatric populations as a simple and low-cost tool for clinical practice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109.
Life at all scales is surprisingly effective at exploiting new opportunities, as demonstrated by the rapid emergence of antimicrobial resistance and novel pathogens. How populations acquire this level of evolvability and the various ways it aids survival are major open questions with direct implications for human health. Here, we use digital evolution to show that changing environments facilitate the simultaneous evolution of high mutation rates and a distribution of mutational effects skewed toward beneficial phenotypes.
View Article and Find Full Text PDFEcol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFEcol Lett
January 2025
Rocky Mountain Biological Laboratory, Gothic, Colorado, USA.
It is unclear how environmental change influences standing genetic variation in wild populations. Here, we characterised environmental conditions that protect versus erode polymorphic chemical defences in Boechera stricta (Brassicaceae), a short-lived perennial wildflower. By manipulating drought and herbivory in a 4-year field experiment, we measured the effects of driver variation on vital rates of genotypes varying in defence chemistry and then assessed interacting driver effects on total fitness (estimated as each genotype's lineage growth rate, λ) using demographic models.
View Article and Find Full Text PDFEcol Lett
January 2025
School of Natural Resources, University of Nebraska-Lincoln, Lincoln, Nebraska, USA.
Theory suggests that animals make hierarchical, multiscale resource selection decisions to address the hierarchy of factors limiting their fitness. Ecologists have developed tools to link population-level resource selection across scales; yet, theoretical expectations about the relationship between coarse- and fine-scale selection decisions at the individual level remain elusive despite their importance to fitness. With GPS-telemetry data collected across California, USA, we evaluated resource selection of mountain lions (Puma concolor; n = 244) relative to spatial variation in human-caused mortality risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!